搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
G115钢的高温持久性能和抗蒸汽氧化性能
          
High Temperature Endurance Property and Steam Oxidation Resistance of G115 Steel

摘    要
在625~700 ℃和不同应力下对G115钢进行高温持久试验,研究其高温持久性能,并采用Larson-Miller(L-M)参数法外推获得该钢的1×105 h长时持久强度,另在650 ℃/27 MPa蒸汽参数下对G115钢进行2 000 h的氧化试验,研究氧化膜的表面及横截面形貌、物相组成及微区成分,并与T92钢进行了对比。结果表明:在富铜相的强化作用下,G115钢在650 ℃下的长时持久强度为82 MPa,明显高于T92钢的53 MPa; G115钢的抗蒸汽氧化性能优于T92钢,G115钢表面氧化膜的厚度约为102μm,小于T92钢表面氧化膜的厚度(约110μm);二者的氧化膜结构类似,外氧化层为粗大的柱状Fe3O4,内氧化层为Fe-Cr尖晶石和少量的Fe3O4,且外氧化层含有较多孔洞,剥落倾向较大。
标    签 G115耐热钢   高温持久   蒸汽氧化   富铜相   G115 heat-resistant steel   high temperature endurance   steam oxidation   copper-rich phase  
 
Abstract
The high temperature endurance test of G115 steel was carried out under different stresses at 625—700 ℃ to study its high temperature endurance performance, and the 1×105 h long-term endurance strength of the steel was extrapolated by the Larson-Miller(LM) parameter method. The oxidation test of G115 steel was carried out at 650 ℃/27 MPa steam parameter for 2 000 h, and the surface and cross-section morphology, phase composition and microarea composition of the oxide film were studied and compared with those of T92 steel. The results show that under the action of reinforcement of copper-rich phase, the long-term endurance strength of G115 steel at 650 ℃ was 82 MPa, which was significantly higher than 53 MPa of T92 steel. The steam oxidation resistance of G115 steel was better than that of T92 steel, and the thickness of oxide film on the surface of G115 steel was about 102 μm, which was smaller than about 110 μm of T92 steel. The oxide film structure of the two was similar. The outer oxide layer consisted of coarse columnar Fe3O4, and the inner oxide layer consisted of fine Fe-Cr spinel and a small amount of Fe3O4; the outer oxide layer had many holes, and the tendency of spalling was relatively large.

中图分类号 TG113.2   DOI 10.11973/jxgccl202202008

 
  中国光学期刊网论文下载说明


所属栏目 试验研究

基金项目 国家重点研发计划项目(2016YFC0801901,2017YFB0305205)

收稿日期 2021/1/6

修改稿日期 2021/12/24

网络出版日期

作者单位点击查看

备注马云海(1987-),男,陕西商洛人,高级工程师,硕士

引用该论文: MA Yunhai,WANG Yanfeng,ZHAO Shuangqun,WANG Miaomiao. High Temperature Endurance Property and Steam Oxidation Resistance of G115 Steel[J]. Materials for mechancial engineering, 2022, 46(2): 48~57
马云海,王延峰,赵双群,王苗苗. G115钢的高温持久性能和抗蒸汽氧化性能[J]. 机械工程材料, 2022, 46(2): 48~57


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】李林平,梁军,赵雷,等.G115/T92异种钢焊接接头的显微组织及力学性能[J].材料热处理学报,2018,39(9):138-144.LI L P,LIANG J,ZHAO L,et al.Microstructure and mechanical properties of G115/T92 dissimilar welded joints[J].Transactions of Materials and Heat Treatment,2018,39(9):138-144.
 
【2】刘正东,包汉生,徐松乾,等.G115耐热钢应用于超600 ℃超超临界火电机组[N].世界金属导报,2015-06-16.LIU Z D,BAO H S,XU S Q,et al.G115 heat-resistant steel used in ultra-supercritical thermal power generating units exceeding 600 ℃[N].World Metal Guide,2015-06-16.
 
【3】FUKUDA M,SAITO E,SEMBA H,et al.Advanced USC technology de-velopment in Japan [C]//Proceedings of the 7th International Conference on Advances in Materials Technology for Fossil PowerPlants. Waikoloa, Hawaii, USA: ASM International,2013.
 
【4】SUN R,CUI Z,TAO Y.Progress of China 700 ℃ USC development program[C]// Proceedings of the 7th International Conference on Advances in Materials Technology for Fossil Power Plants.Waikoloa,HI: ASM International,2013.
 
【5】陈重毅,李永清,陈正宗,等.G115钢焊接热影响区组织特征[J].内蒙古科技大学学报,2020,39(1):34-39.CHEN C Y,LI Y Q,CHEN Z Z,et al.Microstructural characterization in the experimentally simulated weld heat-affected zone of G115 steels[J].Journal of Inner Mongolia University of Science and Technology,2020,39(1):34-39.
 
【6】杨永钊,陶志岐.630 ℃超超临界机组用新材料G115钢的性能介绍及其设备监理要点探讨[J].设备监理,2020(2):8-10.YANG Y Z,TAO Z Q.Performance introduction and key points of equipment supervision of new material—G115 steel for 630 ℃ ultra supercritical unit [J].Plant Engineering Consultants,2020(2):8-10.
 
【7】齐向前.基于ASME规范的G115钢焊条熔敷金属的焊接及热处理工艺[J].焊接技术,2019,48(12):49-51.QI X Q.Welding and heat treatment process of deposited metal with G115 steel electrode based on ASME specification[J].Welding Technology,2019,48(12):49-51.
 
【8】齐向前.不同回火温度下G115钢熔敷金属的显微组织及硬度[J].中国金属通报,2019(11):114-114.QI X Q.Microstructure and hardness of deposited metal of G115 steel at different tempering temperatures[J].China Metal Bulletin,2019(11):114-114.
 
【9】李林平,梁军,赵雷,等.焊后热处理温度对G115/T92异种钢接头组织及力学性能的影响[J].金属热处理,2019,44(2):68-72.LI L P,LIANG J,ZHAO L,et al.Effect of PWHT temperature on microstructure and mechanical properties of G115/T92 dissimilar steel welded joint[J].Heat Treatment of Metals,2019,44(2):68-72.
 
【10】李林平,梁军,赵雷,等.高、低匹配对G115/T92异种钢接头组织与力学性能的影响[J].机械工程材料,2018,42(10):51-57.LI L P,LIANG J,ZHAO L,et al.Effect of overmatching and undermatching on microstructure and mechanical properties of G115/T92 dissimilar steel joint[J].Materials for Mechanical Engineering,2018,42(10):51-57.
 
【11】张学星,蔡文河,伍小林.高效超超临界机组面临挑战及新材料研究重点[N].世界金属导报,2018-08-28(B10).ZHANG X X,CAI W H,WU X L.Challenges faced by high efficiency ultra supercritical units and research focus on new materials [N].World Metal Herald,2018-08-28(B10).
 
【12】翟国丽.新型马氏体耐热钢G115的蠕变性能研究[J].宝钢技术,2019(4):58-62.ZHAI G L.Creep property research of new martensite heat resistant steel G115[J].Baosteel Technology,2019(4):58-62.
 
【13】徐松乾,赵海平.应力对G115马氏体耐热钢晶界特性的影响[J].金属热处理,2019,44(2):58-62.XU S Q,ZHAO H P.Effect of stress on grain boundary characteristic of G115 martensitic heat-resistant steel[J].Heat Treatment of Metals,2019,44(2):58-62.
 
【14】TANG Z X,JING H Y,XU L Y,et al.Creep-fatigue crack growth behavior of G115 steel under different hold time conditions[J].International Journal of Fatigue,2018,116:572-583.
 
【15】TANG Z X,JING H Y,XU L Y,et al.Investigation of creep-fatigue crack growth of G115 steel using a novel damage model[J].International Journal of Mechanical Sciences,2020,183:105827.
 
【16】YU Y H,LIU Z D,ZHANG C,et al.Correlation of creep fracture lifetime with microstructure evolution and cavity behaviors in G115 martensitic heat-resistant steel[J].Materials Science and Engineering:A,2020,788:139468.
 
【17】JIANG C C,DONG Z,SONG X L,et al.Long-term creep rupture strength prediction for a new grade of 9Cr martensitic creep resistant steel (G115)—An application of a new tensile creep rupture model[J].Journal of Materials Research and Technology,2020,9(3):5542-5548.
 
【18】杨柯,梁烨,严伟,等.(9-12)%Cr马氏体耐热钢中微量B元素的择优分布行为及其对微观组织与力学性能的影响[J].金属学报,2020,56(1):53-65.YANG K,LIANG Y,YAN W,et al.Preferential distribution of boron and its effect on microstructure and mechanical properties of(9-12)%Cr martensitic heat resistant steels[J].Acta Metallurgica Sinica,2020,56(1):53-65.
 
【19】TANG Z X,JING H Y,XU L Y,et al.Crack growth behavior,fracture mechanism,and microstructural evolution of G115 steel under creep-fatigue loading conditions[J].International Journal of Mechanical Sciences,2019,161/162:105037.
 
【20】荣剑英.残余应力对G115钢650 ℃蠕变-疲劳裂纹扩展速率的作用[D].天津:天津大学,2018.RONG J Y.Effect of residual stress on creep fatigue-crack growth rate of G115 steel at 650 ℃[D].Tianjin:Tianjin University,2018.
 
【21】XIAO B,XU L Y,ZHAO L,et al.Deformation-mechanism-based creep model and damage mechanism of G115 steel over a wide stress range[J].Materials Science and Engineering:A,2019,743:280-293.
 
【22】XU L Y,RONG J Y,ZHAO L,et al.Creep-fatigue crack growth behavior of G115 steel at 650 ℃[J].Materials Science and Engineering:A,2018,726:179-186.
 
【23】XIAO B,XU L Y,ZHAO L,et al.Creep properties,creep deformation behavior,and microstructural evolution of 9Cr-3W-3Co-1CuVNbB martensite ferritic steel[J].Materials Science and Engineering:A,2018,711:434-447.
 
【24】白银,陈正宗,刘正东,等.蒸汽温度对G115钢氧化行为的影响[J].钢铁研究学报,2020,32(1):52-59.BAI Y,CHEN Z Z,LIU Z D,et al.Effect of temperature on steam oxidation behavior of G115 steel[J].Journal of Iron and Steel Research,2020,32(1):52-59.
 
【25】白银,刘正东,谢建新,等.预氧化处理对G115钢高温蒸气氧化行为的影响[J].金属学报,2018,54(6):895-904.BAI Y,LIU Z D,XIE J X,et al.Effect of pre-oxidation treatment on the behavior of high temperature oxidation in steam of G115 steel[J].Acta Metallurgica Sinica,2018,54(6):895-904.
 
【26】HANSSON A N,MONTGOMERY M,SOMERS M A J.Oxidation of X20 in water vapour:The effect of temperature and oxygen partial pressure[J].Oxidation of Metals,2009,71(3/4):201-218.
 
【27】OTHMAN N K,ZHANG J Q,YOUNG D J.Temperature and water vapour effects on the cyclic oxidation behaviour of Fe-Cr alloys[J].Corrosion Science,2010,52(9):2827-2836.
 
【28】ABE F.Bainitic and martensitic creep-resistant steels[J].Current Opinion in Solid State and Materials Science,2004,8(3/4):305-311.
 
【29】SAWARAGI Y,HIRANO S.The development of a new 18-8 austenitic stainless steel (0.lC-18Cr-9Ni-3Cu-Nb,N) with high elevated temperatures strength for fossil power boilers[M]//Mechanical Behaviour of Materials VI.Amsterdam:Elsevier,1992:589-594.
 
【30】王树申.12Cr-W-Mo-Co 马氏体耐热钢组织结构和性能研究[D].北京:北京科技大学,2015.WANG S S.Studies on the microstructures and properties of12Cr-W-Mo-Co martensitic heat resistant steels[D].Beijing:University of Science and Technology Beijing,2015.
 
【31】杨丽霞.超超临界耐热钢G115中Cu的跨尺度表征及其成分-组织结构-性能相关性研究[D].北京:钢铁研究总院,2018.YANG L X.Multi-scale characterization of Cu and correlation study on composition-structure-properties of ultra supercritical heat resistant steel G115[D].Beijing:Central Iron & Steel Research Institute,2018.
 
【32】WRIGHT I G,DOOLEY R B.A review of the oxidation behaviour of structural alloys in steam[J].International Materials Reviews,2010,55(3):129-167.
 
【33】QUADAKKERS W J,ENNIS P J,ZUREK J,et al.Steam oxidation of ferritic steels– laboratory test kinetic data[J].Materials at High Temperatures,2005,22(1/2):47-60.
 
【34】KOFSTAD P.On the formation of porosity and microchannels in growing scales[J].Oxidation of Metals,1985,24(5/6):265-276.
 
【35】DIECKMANN R.Solution and transport of water in oxides[J].Materials at High Temperatures,2005,22(1/2):93-103.
 
相关信息
   标题 相关频次
 国产核电主管道用316LN钢的低周疲劳性能评估
 4
 T91钢管在600℃长期时效后的组织及力学性能
 2
 T91和HR3C钢在600 ℃/25 MPa超临界二氧化碳中的腐蚀行为
 2
 锅炉管用Sanicro25奥氏体耐热钢在带压蒸汽中的氧化行为
 2
 加氧处理对TP347H钢管蒸汽侧氧化膜的影响
 2
 NF709奥氏体耐热钢700 ℃的蒸汽氧化行为
 1
 T23钢管蒸汽侧氧化层的微观结构及形成机理
 1
 WASPALOY合金长期时效过程中的组织演变和性能变化
 1
 改进型INCONEL740镍基合金在模拟煤灰和烟气环境中的腐蚀行为
 1
 新型镍基高温合金长期时效后的组织稳定性及高温性能
 1