搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
钨极惰性气体保护焊熔池流动特性研究方法
          
Research Methods of Molten Pool Flow Characteristics inTungsten Inert Gas Welding

摘    要
钨极惰性气体保护(TIG)焊过程中的熔池流动对焊缝最终几何形状、显微组织、残余应力等有重要影响,了解熔池流动特性对控制焊缝质量和性能有重要意义。目前,熔池流动特性的研究方法主要分为试验测试、数值模拟和量纲分析3大类,综述了近年来国内外关于TIG焊熔池流动特性研究方法的现状,对比分析了不同研究方法的特点,并对今后的研究方向进行了展望。
标    签 TIG焊   熔池流动特性   数值模拟   试验测试   量纲分析   TIG welding   molten pool flow characteristic   numerical simulation   experimental test   dimensional analysis  
 
Abstract
The flow of the molten pool during tungsten inert gas (TIG) welding has an important impact on the final geometry, microstructure, residual stress of the weld, and understanding the flow characteristics of the molten pool had a great significance to control the quality and properties of the weld. At present, the research methods of molten pool flow characteristics are mainly divided into experimental test, numerical simulation and dimensional analysis. The status of research methods of the molten pool flow characteristics during TIG welding are summarized, and the characteristics of different research methods are compared and analyzed. The future research direction is prospected.

中图分类号 TG402   DOI 10.11973/jxgccl202204002

 
  中国光学期刊网论文下载说明


所属栏目 综述

基金项目 国家自然科学基金资助项目(51605384);甘肃省自然科学基金资助项目(21JR7RA308)

收稿日期 2020/12/10

修改稿日期 2021/12/31

网络出版日期

作者单位点击查看

备注李渊博(1984-),男,陕西临潼人,副教授,博士

引用该论文: LI Yuanbo,ZHENG Wenxing,YE Tao,MA Shuaichuan,ZHAO Xilong. Research Methods of Molten Pool Flow Characteristics inTungsten Inert Gas Welding[J]. Materials for mechancial engineering, 2022, 46(4): 12~20
李渊博,郑文星,叶韬,麻帅川,赵锡龙. 钨极惰性气体保护焊熔池流动特性研究方法[J]. 机械工程材料, 2022, 46(4): 12~20


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】KIM C K, KIM J H, HONG H U, et al.Behavior of weld pool convection and columnar-to-equiaxed grain transition in gas tungsten arc welds of ferritic stainless steels with different aluminum contents[J].Journal of Materials Processing Technology, 2021, 289:116946.
 
【2】WU F, FALCH K V, GUO D, et al.Time evolved force domination in arc weld pools[J].Materials & Design, 2020, 190:108534.
 
【3】DHANDHA K H, BADHEKA V J.Effect of activating fluxes on weld bead morphology of P91 steel bead-on-plate welds by flux assisted tungsten inert gas welding process[J].Journal of Manufacturing Processes, 2015, 17:48-57.
 
【4】FARZADI A, MORAKABIYAN ESFAHANI M, ALAVI ZAREE S R.Theoretical and experimental investigation of gas metal arc weld pool in commercially pure aluminum:Effect of welding current on geometry[J].Journal of Central South University, 2017, 24(11):2556-2564.
 
【5】刘仁培, 陈莉莉, 魏艳红.镍基合金TIG焊接熔池及热影响区组织模拟[J].焊接学报, 2020, 41(3):64-68. LIU R P, CHEN L L, WEI Y H.Simulation of microstructure evolution of weld pool and heat-affected zone during TIG welding of nickel-base alloy[J].Transactions of the China Welding Institution, 2020, 41(3):64-68.
 
【6】RAMKUMAR K D, RAMANAND R, AMEER A, et al.Effect of post weld heat treatment on the microstructure and tensile properties of activated flux TIG welds of Inconel X750[J].Materials Science and Engineering:A, 2016, 658:326-338.
 
【7】RAMKUMAR K D, GOUTHAM P S, RADHAKRISHNA V S, et al.Studies on the structure-property relationships and corrosion behaviour of the activated flux TIG welding of UNS S32750[J].Journal of Manufacturing Processes, 2016, 23:231-241.
 
【8】ULLAH M, WU C S, QAYYUM F.Prediction of crack tip plasticity induced due to variation in solidification rate of weld pool and its effect on fatigue crack propagation rate (FCPR)[J].Journal of Mechanical Science and Technology, 2018, 32(8):3625-3635.
 
【9】XU B, CHEN S J, TASHIRO S, et al.Material flow analyses of high-efficiency joint process in VPPA keyhole flat welding by X-ray transmission system[J].Journal of Cleaner Production, 2020, 250:119450.
 
【10】樊丁, 黄自成, 黄健康, 等.活性元素氧对AA-TIG焊熔池传输行为影响的数值模拟[J].焊接学报, 2016, 37(3):62-66. FAN D, HUANG Z C, HUANG J K, et al.Numerical simulation of the effects of oxygen as active element on weld transportation behavior in arc assisted activating TIG welding[J].Transactions of the China Welding Institution, 2016, 37(3):62-66.
 
【11】WANG X X, HUANG J K, HUANG Y, et al.Investigation of heat transfer and fluid flow in activating TIG welding by numerical modeling[J].Applied Thermal Engineering, 2017, 113:27-35.
 
【12】WANG X X, LUO Y, FAN D.Investigation of heat transfer and fluid flow in high current GTA welding by a unified model[J].International Journal of Thermal Sciences, 2019, 142:20-29.
 
【13】VAN NGUYEN A, TASHIRO S, NGO M H, et al.Influence of shielding gas composition on molten metal flow behavior during plasma keyhole arc welding process[J].Journal of Manufacturing Processes, 2020, 53:431-437.
 
【14】WANG L, WU C S, CHEN J, et al.Influence of the external magnetic field on fluid flow, temperature profile and humping bead in high speed gas metal arc welding[J].International Journal of Heat and Mass Transfer, 2018, 116:1282-1291.
 
【15】黄健康, 潘伟, 孙天亮, 等.不锈钢/碳钢TIG焊熔池表面流动行为[J].焊接学报, 2019, 40(8):18-25. HUANG J K, PAN W, SUN T L, et al.Flow behavior of stainless steel/carbon steel TIG welding pool surface[J].Transactions of the China Welding Institution, 2019, 40(8):18-25.
 
【16】CHEN C, WEI X Q, ZHAO Y, et al.Effects of helium gas flow rate on arc shape, molten pool behavior and penetration in aluminum alloy DCEN TIG welding[J].Journal of Materials Processing Technology, 2018, 255:696-702.
 
【17】ZITOUNI A H, SPITERI P, AISSANI M, et al.Thermal and fluid flow modeling of the molten pool behavior during TIG welding by stream vorticity method[J].International Journal on Interactive Design and Manufacturing (IJIDeM), 2020, 14(1):173-188.
 
【18】黄勇, 李慧, 王新鑫, 等.不同驱动力对熔池表面变形行为影响的数值模拟[J].焊接学报, 2016, 37(8):45-49. HUANG Y, LI H, WANG X X, et al.Numerical simulation of effects of different driving force on surface deformation of weld pool[J].Transactions of the China Welding Institution, 2016, 37(8):45-49.
 
【19】LI L M, LI B K, LIU L C, et al.Numerical modeling of fluid flow, heat transfer and arc-melt interaction in tungsten inert gas welding[J].High Temperature Materials and Processes, 2017, 36(4):427-439.
 
【20】ZHAO C X, VAN STEIJN V, RICHARDSON I M, et al. Experimental characterization of GTA weld pool surface flow using PIV[C]//ASM Proceedings of the International Conference:Trends in Welding Research. Materials Park, OH:ASM International, 2009.
 
【21】ZHANG Y M, SONG H S, SAEED G.Observation of a dynamic specular weld pool surface[J].Measurement Science and Technology, 2006, 17(6):9-12.
 
【22】SMITH J S, BALFOUR C.Real-time top-face vision based control of weld pool size[J].Industrial Robot:An International Journal, 2005, 32(4):334-340.
 
【23】ZHANG G J, YAN Z H, WU L.Reconstructing a three-dimensional P-GMAW weld pool shape from a two-dimensional visual image[J].Measurement Science and Technology, 2006, 17(7):1877-1882.
 
【24】SAEED G, LOU M, ZHANG Y M.Computation of 3D weld pool surface from the slope field and point tracking of laser beams[J].Measurement Science and Technology, 2004, 15(2):389-403.
 
【25】WANG J J, LIN T, CHEN S B.Obtaining weld pool vision information during aluminium alloy TIG welding[J].The International Journal of Advanced Manufacturing Technology, 2005, 26(3):219-227.
 
【26】ZHANG Y M, WU L, WALCOTT B L. Determining joint penetration in GTAW with vision sensing of weld face geometry[J]. Welding Journal, 1993, 72(10):463-469.
 
【27】肖心远, 蒋波, 倪江忠, 等.基于极线约束的机器人双目视觉水下焊缝特征匹配研究[J].制造业自动化, 2012, 34(10):119-123. XIAO X Y, JIANG B, NI J Z, et al.Research on underwater welding seam feature matching of robot binocular vision based on epipolar constraint[J].Manufacturing Automation, 2012, 34(10):119-123.
 
【28】ZHAO D B, YI J Q, CHEN S B, et al.Extraction of three-dimensional parameters for weld pool surface in pulsed GTAW with wire filler[J].Journal of Manufacturing Science and Engineering, 2003, 125(3):493-503.
 
【29】ZHAO C. Measurements of fluid flow in weld pools[D]. Dutch:Technische Universiteit Delft, 2011:31-59.
 
【30】SONG H S, ZHANG Y M. Measurement and analysis of three-dimensional specular gas tungsten arc weld pool surface[J]. Welding Journal, 2008, 87(4):85-95.
 
【31】李来平, 陈善本, 林涛.铝合金脉冲GTAW熔池表面反射模型的建立[J].焊接学报, 2005, 26(7):77-80. LI L P, CHEN S B, LIN T.Modeling of welding pool surface reflectance of aluminum alloy pulse GTAW[J].Transactions of the China Welding Institution, 2005, 26(7):77-80.
 
【32】WU F, FALCH K V, DRAKOPOULOS M, et al.In situ X-ray observations of transient states in arc weld pools[J].IOP Conference Series:Materials Science and Engineering, 2020, 861(1):012071.
 
【33】张瑞华, 尹燕, 水谷正海, 等.活性剂钨极惰性气体保护电弧焊接熔池行为的观察[J].机械工程学报, 2009, 45(3):115-118, 123. ZHANG R H, YIN Y, SEIJI K, et al.Observations of molten pool behavior during A-TIG welding[J].Journal of Mechanical Engineering, 2009, 45(3):115-118, 123.
 
【34】张瑞华, 尹燕, 樊丁, 等.A-TIG焊熔池流体流动形态的测试[J].电焊机, 2008, 38(12):41-44. ZHANG R H, YIN Y, FAN D, et al.Test of fluid flow forming in A-TIG welding pool[J].Electric Welding Machine, 2008, 38(12):41-44.
 
【35】黄健康, 孙天亮, 樊丁, 等.TIG焊熔池表面流动行为的研究[J].机械工程学报, 2016, 52(18):31-37. HUANG J K, SUN T L, FAN D, et al.Study on the surface flow behavior of TIG weld pool[J].Journal of Mechanical Engineering, 2016, 52(18):31-37.
 
【36】安亚君, 李维强, 朱利, 等.粉煤灰活性剂对A-TIG焊熔池流动行为及焊缝性能的影响[J].焊接学报, 2018, 39(6):110-115, 134. AN Y J, LI W Q, ZHU L, et al.Effect of fly ash activator on the flow behavior and weld properties of A-TIG welding pool[J].Transactions of the China Welding Institution, 2018, 39(6):110-115, 134.
 
【37】KOU S, SUN D K.Fluid flow and weld penetration in stationary arc welds[J].Metallurgical Transactions A, 1985, 16(1):203-213.
 
【38】KOU S, LIMMANEEVICHITR C. Visualization of Marangoni convection in simulated weld pools containing a surface-active agent[J]. Welding Journal, 2000, 79(11):324-330.
 
【39】LIMMANEEVICHITR C, KOU S. Experiments to simulate effect of Marangoni convection on weld pool shape[J]. Welding Journal, 2000, 79(8):231-237.
 
【40】赵明, 武传松, 孙永兴.全熔透钨极惰性气体保护电弧焊熔池流动与传热动态过程的数值分析[J].机械工程学报, 2009, 45(9):266-271. ZHAO M, WU C S, SUN Y X.Numerical analysis of dynamic fluid flow and heat transfer in fully-penetrated GTAW weld pool[J].Journal of Mechanical Engineering, 2009, 45(9):266-271.
 
【41】CHOO R T C, SZEKELY J. The effect of gas shear stress on Marangoni flows in arc welding[J]. Welding Journal, 1991, 70(9):223-233.
 
【42】OREPER G M, EAGAR T W, SZEKELY J. Convection in arc weld pools[J]. Welding Journal, 1983, 62(11):307-312.
 
【43】OREPER G M, SZEKELY J.A comprehensive representation of transient[J].Metallurgical Transactions A, 1987, 18(7):1325-1332.
 
【44】WANG Y, SHI Q, TSAI H L.Modeling of the effects of surface-active elements on flow patterns and weld penetration[J].Metallurgical and Materials Transactions B, 2001, 32(1):145-161.
 
【45】ZHANG W, ROY G G, ELMER J W, et al.Modeling of heat transfer and fluid flow during gas tungsten arc spot welding of low carbon steel[J].Journal of Applied Physics, 2003, 93(5):3022-3033.
 
【46】XU Y L, DONG Z B, WEI Y H, et al.Marangoni convection and weld shape variation in A-TIG welding process[J].Theoretical and Applied Fracture Mechanics, 2007, 48(2):178-186.
 
【47】XU Y L, WEI Y H.Comparisons between different models for thermal simulation of GTAW process[J].China Welding, 2005, 14(2):125-129.
 
【48】VOLLER V R, PRAKASH C.A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems[J].International Journal of Heat and Mass Transfer, 1987, 30(8):1709-1719.
 
【49】UNNI A K, VASUDEVAN M.Numerical modelling of fluid flow and weld penetration in activated TIG welding[J].Materials Today:Proceedings, 2020, 27:2768-2773.
 
【50】CHOO R T C, SZEKELY J, DAVID S A.On the calculation of the free surface temperature of gas-tungsten-arc weld pools from first principles:Part II.Modeling the weld pool and comparison with experiments[J].Metallurgical and Materials Transactions B, 1992, 23(3):371-384.
 
【51】GOODARZI M, CHOO R, TAKASU T, et al.The effect of the cathode tip angle on the gas tungsten arc welding arc and weld pool:II.The mathematical model for the weld pool[J].Journal of Physics D:Applied Physics, 1998, 31(5):569-583.
 
【52】GOODARZI M, CHOO R, TOGURI J M.The effect of the cathode tip angle on the GTAW arc and weld pool:I.Mathematical model of the arc[J].Journal of Physics D:Applied Physics, 1997, 30(19):2744-2756.
 
【53】TANAKA M, TERASAKI H, USHIO M, et al.A unified numerical modeling of stationary tungsten-inert-gas welding process[J].Metallurgical and Materials Transactions A, 2002, 33(7):2043-2052.
 
【54】TRAIDIA A, ROGER F.Numerical and experimental study of arc and weld pool behaviour for pulsed current GTA welding[J].International Journal of Heat and Mass Transfer, 2011, 54(9/10):2163-2179.
 
【55】樊丁, 黄自成, 黄健康, 等.考虑金属蒸汽的钨极惰性气体保护焊电弧与熔池交互作用三维数值分析[J].物理学报, 2015, 64(10):304-314. FAN D, HUANG Z C, HUANG J K, et al.Three-dimensional numerical analysis of interaction between arc and pool by considering the behavior of the metal vapor in tungsten inert gas welding[J].Acta Physica Sinica, 2015, 64(10):304-314.
 
【56】黄健康. 焊接物理基础[M]. 北京:化学工业出版社, 2020. HUANG J K. Physical basis of welding[M]. Beijing:Chemical Industry Press, 2020.
 
【57】MOUGENOT J, GONZALEZ J J, FRETON P, et al.Plasma and weld pool characteristics in a TIG configuration[J].IEEE Transactions on Plasma Science, 2014, 42(10):2808-2809.
 
【58】MOUGENOT J, GONZALEZ J J, FRETON P, et al.Plasma and weld pool characteristics in a TIG configuration[J].IEEE Transactions on Plasma Science, 2014, 42(10):2808-2809.
 
【59】TANAKA M, TASHIRO S, SATOH T, et al.Influence of shielding gas composition on arc properties in TIG welding[J].Science and Technology of Welding and Joining, 2008, 13(3):225-231.
 
【60】李渊博, 朱亮.绝缘片约束TIG电弧在窄间隙中的加热特性[J].焊接学报, 2013, 34(7):51-54. LI Y B, ZHU L.Heating characteristic of constricting TIG arc with insulating plate in narrow gap welding[J].Transactions of the China Welding Institution, 2013, 34(7):51-54.
 
【61】KOBAYASHI K, NISHIMURA Y, IIJIMA T, et al.Practical application of high efficiency twin-arc TIG welding method (sedar-TIG) for PCLNG storage tank[J].Welding in the World, 2004, 48(7/8):35-39.
 
【62】KORHONEN M, LUUKAS M, HAENNINEN H. Narrow gap GTA welding of stainless steels[J]. Svetsaren, 2000, 55(1):3-8.
 
【63】WANG J F, SUN Q J, FENG J C, et al.Characteristics of welding and arc pressure in TIG narrow gap welding using novel magnetic arc oscillation[J].The International Journal of Advanced Manufacturing Technology, 2017, 90(1/2/3/4):413-420.
 
【64】YIN X Q, GOU J J, ZHANG J X, et al.Numerical study of arc plasmas and weld pools for GTAW with applied axial magnetic fields[J].Journal of Physics D:Applied Physics, 2012, 45(28):285203.
 
【65】HAIDAR J.A theoretical model for gas metal arc welding and gas tungsten arc welding.I[J].Journal of Applied Physics, 1998, 84(7):3518-3529.
 
【66】XIAO Y H, DEN OUDEN G. A study of GTA weld pool oscillation[J]. Welding Journal, 1990, 69(8):289-293.
 
【67】XIAO Y H, OUDEN G D. Weld pool oscillation during GTA welding of mild steel[J]. Welding Journal, 1993, 72(8):428-434.
 
【68】YUDODIBROTO B Y B, HERMANS M J M, HIRATA Y, et al.Pendant droplet oscillation during GMAW[J].Science and Technology of Welding and Joining, 2006, 11(3):308-314.
 
【69】HA E J, KIM W S.A study of low-power density laser welding process with evolution of free surface[J].International Journal of Heat and Fluid Flow, 2005, 26(4):613-621.
 
【70】HIRT C W, NICHOLS B D.Volume of fluid (VOF) method for the dynamics of free boundaries[J].Journal of Computational Physics, 1981, 39(1):201-225.
 
【71】LEE J Y, KO S H, FARSON D F, et al.Mechanism of keyhole formation and stability in stationary laser welding[J].Journal of Physics D:Applied Physics, 2002, 35(13):1570-1576.
 
【72】HUANG J K, YANG M H, CHEN J S, et al.The oscillation of stationary weld pool surface in the GTA welding[J].Journal of Materials Processing Technology, 2018, 256:57-68.
 
【73】JIAN X X, WU C S.Numerical analysis of the coupled arc-weld pool-keyhole behaviors in stationary plasma arc welding[J].International Journal of Heat and Mass Transfer, 2015, 84:839-847.
 
【74】PAN J J, HU S S, YANG L J, et al.Numerical analysis of the heat transfer and material flow during keyhole plasma arc welding using a fully coupled tungsten-plasma-anode model[J].Acta Materialia, 2016, 118:221-229.
 
【75】GINGOLD R A, MONAGHAN J J.Smoothed particle hydrodynamics:Theory and application to non-spherical stars[J].Monthly Notices of the Royal Astronomical Society, 1977, 181(3):375-389.
 
【76】DAS R, CLEARY P W.Novel application of the mesh-free SPH method for modelling thermo-mechanical responses in arc welding[J].International Journal of Mechanics and Materials in Design, 2015, 11(3):337-355.
 
【77】SHIGETA M, ITO M, IZAWA S, et al. Three-dimensional simulation of a flow in an arc weld pool by SPH method[J]. Transactions of JWRI, 2010, 39(2):11-13.
 
【78】ITO M, NISHIO Y, IZAWA S, et al.Numerical simulation of joining process in a TIG welding system using incompressible SPH method[J].Quarterly Journal of the Japan Welding Society, 2015, 33(2):34-38.
 
【79】DAS R, CLEARY P W.Three-dimensional modelling of coupled flow dynamics, heat transfer and residual stress generation in arc welding processes using the mesh-free SPH method[J].Journal of Computational Science, 2016, 16:200-216.
 
【80】TRAUTMANN M, HERTEL M, FVSSEL U.Numerical simulation of TIG weld pool dynamics using smoothed particle hydrodynamics[J].International Journal of Heat and Mass Transfer, 2017, 115:842-853.
 
【81】HALL A C, ROBINO C V.Association of microstructural features and rippling phenomenon in 304 stainless steel gas tungsten arc welds[J].Science and Technology of Welding and Joining, 2004, 9(2):103-108.
 
【82】MUNDRA K, DEBROY T, KELKAR K M.Numerical prediction of fluid flow and heat transfer in welding with a moving heat source[J].Numerical Heat Transfer, Part A:Applications, 1996, 29(2):115-129.
 
【83】ZACHARIA T, DAVID S A, VITEK J M, et al.Computational modeling of stationary gastungsten-arc weld pools and comparison to stainless steel 304 experimental results[J].Metallurgical Transactions B, 1991, 22(2):243-257.
 
相关信息
   标题 相关频次
 2519铝合金管材热挤压过程的数值模拟
 2
 45钢交流闪光对焊焊接热影响区晶粒长大的数值模拟
 2
 6013-T4铝合金在不同温度和应变速率下的动态力学行为及数值模拟
 2
 6N01铝合金中厚板三点弯曲变形行为的数值模拟
 2
 7022铝合金搅拌摩擦焊接全过程温度场的数值模拟
 2
 7050铝合金施加超声铸造的数值模拟
 2
 7075-T6铝合金摩擦塞焊焊接区域温度场的数值模拟
 2
 90°竖直弯管的液固两相流冲刷腐蚀模拟
 2
 AerMet100钢再结晶过程的相场模拟
 2
 AM80镁合金板材热挤压工艺的数值模拟
 2
 API油管接箍液固两相流体冲蚀数值模拟
 2
 AZ31镁合金方管挤压成型的数值模拟
 2
 AZ31镁合金在不同温度场挤压中的数值模拟
 2
 E-玻璃纤维2D编织层铺增强复合材料的损伤力学本构模型及应用
 2
 F45MnVS非调质钢动态再结晶模型与晶粒尺寸数值模拟
 2
 Fluent模拟验证187137-IP减压阀阀芯失效机理
 2
 Gleeble热机械模拟试验中焦耳效应的数值模拟和试验验证
 2
 Inconel 625镍基合金管道焊接残余应力的数值模拟
 2
 Inconel625合金激光熔覆过程中显微组织演变的数值模拟
 2
 Q420D高强钢横向十字焊接接头疲劳寿命数值模拟与试验验证
 2
 SCR脱硝反应器内烟气与氨均混的数值模拟
 2
 SiCp/101Al复合材料电子束焊接接头温度场对其显微组织的影响
 2
 TC4钛合金半球零件超塑成形的有限元模拟
 2
 TC4钛合金搅拌摩擦焊温度场的数值模拟
 2
 TC4钛合金绝热剪切行为的数值模拟
 2
 TWIP钢激光和TIG焊接接头的组织和性能
 2
 凹模圆角半径对高强钢板热成形破裂行为影响的数值模拟
 2
 奥氏体不锈钢纵向焊接残余应力分布的有限元模拟
 2
 薄板结构中Lamb波的检测与仿真
 2
 不同工艺下GH4169镍基高温合金电弧增材制造热力场数值模拟
 2