搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
真空感应气体雾化技术中紧耦合环缝喷嘴雾化过程的仿真
          
Numerical Simulation of Close-Coupled Annular Nozzle Atomization Process in Vacuum Induction Gas Atomization Technology

摘    要
采用流体体积方法耦合雷诺应力模型与离散相模型结合泰勒类比不稳定性破碎模型,利用计算流体力学软件Fluent19.2,对紧耦合环缝喷嘴初次雾化与二次雾化进行全流程仿真,并进行了试验验证。结果表明:初次雾化过程使导流管底部形成环形液膜结构,液膜前端的初次雾化主要是气体射流自由边界湍流剪切的结果,并且初次雾化形成的液滴直径满足正态分布;随着分散的液滴群外侧接触气体射流,从液滴群的外侧开始向心部发生二次雾化过程,但是未接触气体射流的液滴仍保持较高的过热度。仿真得到紧耦合环缝喷嘴二次雾化后粉末的直径与试验结果吻合较好,相对误差小于5%,验证了仿真的准确性。
标    签 真空感应气体雾化   紧耦合环缝喷嘴   初次雾化   二次雾化   VIGA   close-coupled annular nozzle   primary atomization   secondary atomization  
 
Abstract
The volume of fluid approach was coupled the Reynolds stress model and the discrete phase model combined with the Taylor analogy break-up instability breaking model to simulate the primary atomization and secondary atomization for the close-coupled annular nozzle by computational fluid dynamics software Fluent19.2, and the simulation was verified by experiment. The results show that the primary atomization resulted in the forming of an annular liquid film at the bottom of the delivery tube. The primary atomization at the tip of the liquid film was mainly the result of turbulent shear at the free boundary of the gas jet, and the diameter of the droplets formed by the primary atomization satisfied the normal distribution. As the outside of the dispersed droplet group contacted the gas jet, the secondary atomization gradually started from the outside of the droplet group to the core, but the droplets those did not contact with the gas jet maintained a high degree of superheat. The simulated diameter of the powder after secondary atomization by the close-coupled annular nozzle was in good agreement with test results, and the relative error was less than 5%, which verified the accuracy of simulation.

中图分类号 TF123   DOI 10.11973/jxgccl202204012

 
  中国光学期刊网论文下载说明


所属栏目 物理模拟与数值模拟

基金项目 2021年沧州市科技计划自筹经费项目(213101010)

收稿日期 2021/1/18

修改稿日期 2021/12/30

网络出版日期

作者单位点击查看

备注孙迎建(1987-),女,河北沧州人,讲师,硕士通信作者:郝瑞林

引用该论文: SUN Yingjian,ZHOU Lijie,GONG Xiang,ZHANG Pengcheng,HAO Ruilin. Numerical Simulation of Close-Coupled Annular Nozzle Atomization Process in Vacuum Induction Gas Atomization Technology[J]. Materials for mechancial engineering, 2022, 46(4): 75~81
孙迎建,周利杰,宫翔,张鹏程,郝瑞林. 真空感应气体雾化技术中紧耦合环缝喷嘴雾化过程的仿真[J]. 机械工程材料, 2022, 46(4): 75~81


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】LI X G, ZHU Q, SHU S, et al.Fine spherical powder production during gas atomization of pressurized melts through melt nozzles with a small inner diameter[J].Powder Technology, 2019, 356:759-768.
 
【2】黎兴刚, 刘畅, 朱强.面向金属增材制造的气体雾化制粉技术研究进展[J].航空制造技术, 2019, 62(22):22-34. LI X G, LIU C, ZHU Q.Research progress on gas atomization technology for preparation of feedstock powder used in metal additive manufacturing[J].Aeronautical Manufacturing Technology, 2019, 62(22):22-34.
 
【3】KASSYM K, PERVEEN A.Atomization processes of metal powders for 3D printing[J].Materials Today:Proceedings, 2020, 26:1727-1733.
 
【4】WANG P, LI J, WANG X, et al.Close-coupled nozzle atomization integral simulation and powder preparation using vacuum induction gas atomization technology[J].Chinese Physics B, 2021, 30(2):027502.
 
【5】夏敏, 汪鹏, 张晓虎, 等.电极感应熔化气雾化制粉技术中非限制式喷嘴雾化过程模拟[J].物理学报, 2018, 67(17):41-51. XIA M, WANG P, ZHANG X H, et al.Computational fluid dynamic investigation of the primary and secondary atomization of the free-fall atomizer in electrode induction melting gas atomization process[J].Acta Physica Sinica, 2018, 67(17):41-51.
 
【6】夏敏, 汪鹏, 张晓虎, 等.电极感应熔化气雾化法制备高温合金粉末中非限制式喷嘴的结构优化设计[J].粉末冶金技术, 2019, 37(4):288-297. XIA M, WANG P, ZHANG X H, et al.Optimum structure design of free-fall nozzle in preparation process of superalloy powders by electrode induction gas atomization technology[J].Powder Metallurgy Technology, 2019, 37(4):288-297.
 
【7】ZEOLI N, GU S.Computational simulation of metal droplet break-up, cooling and solidification during gas atomisation[J].Computational Materials Science, 2008, 43(2):268-278.
 
【8】ZEOLI N, GU S.Numerical modelling of droplet break-up for gas atomisation[J].Computational Materials Science, 2006, 38(2):282-292.
 
【9】MOTAMAN S, MULLIS A M, COCHRANE R F, et al.Numerical and experimental investigations of the effect of melt delivery nozzle design on the open-to closed-wake transition in closed-coupled gas atomization[J].Metallurgical and Materials Transactions B, 2015, 46(4):1990-2004.
 
【10】MOTAMAN S, MULLIS A M, COCHRANE R F, et al.Numerical and experimental modelling of back stream flow during close-coupled gas atomization[J].Computers & Fluids, 2013, 88:1-10.
 
【11】朱玲玲, 吴建军, 刘明翔, 等.基于CFD技术的超音速喷嘴两相流破碎机制研究[J].粉末冶金材料科学与工程, 2018, 23(3):229-237. ZHU L L, WU J J, LIU M X, et al.A computational fluid dynamics (CFD) research on the atomization mechanism of two-phase flows in ultrasonic gas atomizer[J].Materials Science and Engineering of Powder Metallurgy, 2018, 23(3):229-237.
 
【12】ZEOLI N, TABBARA H, GU S.CFD modeling of primary breakup during metal powder atomization[J].Chemical Engineering Science, 2011, 66(24):6498-6504.
 
【13】WEI M W, CHEN S Y, SUN M, et al.Atomization simulation and preparation of 24CrNiMoY alloy steel powder using VIGA technology at high gas pressure[J].Powder Technology, 2020, 367:724-739.
 
【14】FRITSCHING U. Spray simulation:Modeling and numerical simulation of spray forming metals[M]. New York:American Society of Mechanical Engineers, 2006.
 
【15】LI X G, FRITSCHING U.Process modeling pressure-swirl-gas-atomization for metal powder production[J].Journal of Materials Processing Technology, 2017, 239:1-17.
 
【16】ASHGRIZ N.Handbook of atomization and sprays[M].Boston, MA:Springer US, 2011.
 
【17】FIRMANSYAH D A, KAISER R, ZAHAF R, et al.Numerical simulations of supersonic gas atomization of liquid metal droplets[J].Japanese Journal of Applied Physics, 2014, 53(5S3):05HA09.
 
相关信息
   标题 相关频次
 GCr15轴承钢在盐酸溶液中的点蚀行为
 2
 基于GF-WLS和VSM的多能量X射线图像融合方法
 2
 基于图像配准的铸件内部缺陷检测技术
 2
 短波长X射线应力测试的重复性及统计误差评估
 1
 短波长特征X射线衍射法无损测定孔挤压强化A100钢内部径向残余应力分布
 1
 铝合金搅拌摩擦焊接头内部残余应力的短波长X射线测试
 1