搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
基于有限元分析的压力容器损伤阵列稀疏特征建模与定位方法
          
Finite element analysis based sparse array features modeling and localization method forpressure vessel damage

摘    要
针对压力容器无损检测中较难检测的封头部位,提出了一种基于压电超声导波阵列的在线监测方法。首先,建立压力容器封头结构的有限元模型,利用窄带Lamb波模拟结构损伤源的散射信号;其次,将被监测区域离散成稀疏点,对每个稀疏点的回波信号提取阵列波达时间差作为导波阵列的稀疏特征信息,并计算损伤回波信号的波达时间均方根值(RMS),形成基于有限元模型的损伤稀疏特征样本库;最后,通过计算实测损伤回波信号均方根值与损伤稀疏特征样本库匹配成像,像素点最高的位置即为损伤位置。试验结果表明,模拟损伤距离定位误差为20 mm,角度定位误差为1°,与实际损伤位置较为符合,能够较准确地反映缺陷的位置。
标    签 有限元分析   压力容器   导波阵列   飞行时间   损伤定位   finite element analysis   pressure vessel   guided wave array   TOF   damage localization  
 
Abstract
Aiming at the difficulty of nondestructive testing of pressure vessels head part, a piezoelectric ultrasonic guided wave array is proposed for pressure vessel damage localization. Firstly, a finite element model of the head part of pressure vessel is established, and the narrow-band of Lamb wave is excited to simulate the echo of the damage. Secondly, discrete the monitored area into sparse points, the time of flight (TOF) of array signal at each sparse points is obtained as the sparse feature of the guided wave array, and calculates the root mean square (RMS) value of them to form the damage sparse feature sample library. Finally, the RMS of the measured array signal when a damage happen is calculated to match the damage sparse feature sample library for damage imaging, and the highest position of the pixel is the position of damage occurred. The test results show that the simulated damage distance positioning error is 20 mm and the angle positioning error is 1°, which is more consistent with the actual damage position and can accurately reflect the position of the defect.

中图分类号 TG115.28   DOI 10.11973/wsjc202204010

 
  中国光学期刊网论文下载说明


所属栏目 试验研究

基金项目 青年科学基金项目(51905242)

收稿日期 2021/10/28

修改稿日期

网络出版日期

作者单位点击查看


备注朱高亮(1997-),男,硕士研究生,主要研究方向为超声导波监测与信号处理

引用该论文: ZHU Gaoliang,WANG Zhiling,ZHONG Yongteng. Finite element analysis based sparse array features modeling and localization method forpressure vessel damage[J]. Nondestructive Testing, 2022, 44(4): 50~54
朱高亮,王志凌,钟永腾. 基于有限元分析的压力容器损伤阵列稀疏特征建模与定位方法[J]. 无损检测, 2022, 44(4): 50~54


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】WANG X J,QIANG W J,SHU G G.Magnetic non-destructive evaluation of hardening of cold rolled reactor pressure vessel steel[J].Journal of Nuclear Materials,2017,492:178-182.
 
【2】YANG B,XIANG Y X,XUAN F Z,et al.Damage localization in hydrogen storage vessel by guided waves based on a real-time monitoring system[J].International Journal of Hydrogen Energy,2019,44(40):22740-22751.
 
【3】李培中,于丛娟,孙晓靖.压力容器制造监检中发现的射线检测问题综述[J].中国特种设备安全,2016,32(1):37-41.
 
【4】WILSON J W,ALLEN D J,PEYTON A J,et al.Detection of creep degradation during pressure vessel testing using electromagnetic sensor technology[J].Energy Materials,2018,13(2):448-457.
 
【5】XU G R,GUAN X S,QIAO Y L,et al.Analysis and innovation for penetrant testing for airplane parts[J].Procedia Engineering,2015,99:1438-1442.
 
【6】AMJADIAN M,AGRAWAL A K.Modeling,design,and testing of a proof-of-concept prototype damper with friction and eddy current damping effects[J].Journal of Sound and Vibration,2018,413:225-249.
 
【7】LUGOVTSOVA Y,PRAGER J.Structural health monitoring of composite pressure vessels using guided ultrasonic waves[J].Insight-Non-Destructive Testing and Condition Monitoring,2018,60(3):139-144.
 
【8】刘伟成,张路根,胡智,等.海洋石油静电脱水压力容器的超声导波检测[J].无损检测,2012,34(2):31-34,67.
 
【9】CHEN D Y,WANG D,CHEN H,et al.Research of key technology for macroscopic hydrogen induced injury testing and in-service monitoring of pressure vessel in wet hydrogen sulfide environment[J].Procedia Engineering,2015,130:1665-1676.
 
【10】PARODI M,FIASCHI C,MEMMOLO V,et al.Interaction of guided waves with delamination in a bilayered aluminum-composite pressure vessel[J].Journal of Materials Engineering and Performance,2019,28(6):3281-3291.
 
【11】SAUSE M G R,HAMSTAD M A,HORN S.Finite element modeling of lamb wave propagation in anisotropic hybrid materials[J].Composites Part B:Engineering,2013,53:249-257.
 
【12】DUCZEK S,JOULAIAN M,DÜSTER A,et al.Numerical analysis of Lamb waves using the finite and spectral cell methods[J].International Journal for Numerical Methods in Engineering,2014,99(1):26-53.
 
【13】MOSER F,JACOBS L J,QU J M.Modeling elastic wave propagation in waveguides with the finite element method[J].NDT & E International,1999,32(4):225-234.
 
相关信息
   标题 相关频次
 16MnR系列材料在油田H2S-CO2-Cl-环境下的耐蚀性
 2
 1Cr5Mo钢弯管开裂原因分析
 2
 2.25Cr-1Mo钢氢致裂纹扩展行为研究
 2
 316L不锈钢液控管线在稠油热采服役环境下的应力腐蚀行为
 2
 800 MPa超细晶粒钢焊接过程的有限元分析
 2
 HR-2合金锻棒心部孔洞形成原因
 2
 V型缺口冲击试样尺寸公差因素的有限元分析
 2
 奥氏体不锈钢压力容器应变强化技术的发展及国外标准比较
 2
 壁厚不均对平面内弯矩作用下P92钢管弯头蠕变寿命的影响
 2
 不等厚P92钢弯头的球形缺陷应力分析及预测
 2
 残余应力对Oliver-Pharr方法测量弹性模量的影响
 2
 超超临界锅炉捞渣机圆环链断裂分析
 2
 磁记忆检测技术在压力容器上的应用
 2
 带垫P型卡箍断裂原因
 2
 地下储罐漏磁检测装置样机设计
 2
 电磁超声螺栓轴向应力测量的有限元分析与试验
 2
 电流互感器引流抱箍线夹断裂原因
 2
 多阵列超声导波频相联控激励下复合材料损伤聚焦成像方法
 2
 翻边系数及材料参数对空调面板成形的影响
 2
 反应堆压力容器超声自动标定扫查装置的设计
 2
 反应堆压力容器检查机支撑腿的设计及可靠性研究
 2
 腐蚀缺陷管道风险评估有限元模拟研究
 2
 腐蚀缺陷漏磁场检测有限元模拟
 2
 钢轨表面缺陷漏磁检测的三维磁场分析
 2
 钢结构聚氨酯涂层力学性能及抗冲击性能的有限元分析
 2
 高频疲劳损伤齿轮磁记忆效应的仿真
 2
 锆金属拉伸的声发射特性
 2
 构件形状对金属磁记忆检测的影响
 2
 管道多缺陷对涡流检测影响的仿真
 2
 管道杂散电流干扰及防腐层破损分析
 2