搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
分子印迹荧光探针在农药检测中的应用进展
          
Application Progress of Molecularly Imprinted Fluorescent Probe in Pesticide Detection

摘    要
分子印迹聚合物由于可特异性地从样品溶液中富集目标物,已被广泛应用于粮食、果蔬等食品以及水、土壤等环境中农药的提取和检测。将分子印迹技术和量子点修饰技术相结合形成的分子印迹荧光探针,可以实现对目标物的高灵敏快速检测。据此,对分子印迹技术的原理、制备方法及应用进行了概述,并进一步阐述了量子点修饰的分子印迹荧光探针在农药检测中的应用和展望。
标    签 分子印迹聚合物   制备方法   量子点   农药检测   molecularly imprinted polymer   preparation method   quantum dot   pesticide detection  
 
Abstract
The molecularly imprinted polymer could specifically enrich the target compounds from the sample solution, which had been widely used in the extraction and detection of pesticides in food including cereals, fruits and vegetables, and in the environment including water and soil. The molecularly imprinted fluorescent probe formed by combining molecular imprinting technology and quantum dot modification technology could achieve high-sensitivity and rapid detection of the target compounds. Therefore, the principle, preparation method and application of molecular imprinting technology were summarized, and the application and prospect of quantum dot-modified molecularly imprinted fluorescent probe in pesticide detection were further elaborated.

中图分类号 O65   DOI 10.11973/lhjy-hx202206021

 
  中国光学期刊网论文下载说明


所属栏目 综述

基金项目 上海市科委创新行动计划农业领域项目(19391902200)

收稿日期 2021/7/5

修改稿日期

网络出版日期

作者单位点击查看


备注王胜洁,硕士研究生,主要从事分子印迹荧光探针在新烟碱类农药快速检测方面的应用研究工作

引用该论文: WANG Shengjie,WEI Ziqi,CAO Hui,XU Fei,YE Tai,YUAN Min,WU Xiuxiu,YIN Fengqin,YU Jinsong,HAO Liling. Application Progress of Molecularly Imprinted Fluorescent Probe in Pesticide Detection[J]. Physical Testing and Chemical Analysis part B:Chemical Analysis, 2022, 58(6): 735~744
王胜洁,魏子奇,曹慧,徐斐,叶泰,袁敏,吴秀秀,阴凤琴,于劲松,郝丽玲. 分子印迹荧光探针在农药检测中的应用进展[J]. 理化检验-化学分册, 2022, 58(6): 735~744


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】RIOS F M, WILCOXEN T E, ZIMMERMAN L M. Effects of imidacloprid on Rana catesbeiana immune and nervous system[J]. Chemosphere, 2017,188:465-469.
 
【2】PICÓ Y, RODRÍGUEZ R, MAÑES J. Capillary electrophoresis for the determination of pesticide residues[J]. Trends in Analytical Chemistry, 2003,22(3):133-151.
 
【3】STARR J, GRAHAM S, STOUT D, et al. Pyrethroid pesticides and their metabolites in vacuum cleaner dust collected from homes and day-care centers[J]. Environmental Research, 2008,108(3):271-279.
 
【4】ZHANG J H, GAO H X, PENG B, et al. Comparison of the performance of conventional, temperature-controlled, and ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction combined with high-performance liquid chromatography in analyzing pyrethroid pesticides in honey samples[J]. Journal of Chromatography A, 2011,1218(38):6621-6629.
 
【5】RAQUEL G, MARCO D R, GOMES D S, et al. "On-off" switchable tool for food sample preparation:Merging molecularly imprinting technology with stimuli-responsive blocks. Current status, challenges and highlighted applications[J]. Talanta, 2017:176-479.
 
【6】张锦.甲基膦酸二甲酯分子印迹复合膜的合成与性能研究[D].重庆:重庆大学, 2014.
 
【7】AHMADPOUR H, HOSSEINI S M M. A solid-phase luminescence sensor based on molecularly imprinted polymer-CdSeS/ZnS quantum dots for selective extraction and detection of sulfasalazine in biological samples[J]. Talanta, 2018,194:534-541.
 
【8】刘欣,孙秀兰,曹进.分子印迹技术在食品样品安全分析中的应用[J].食品安全质量检测学报, 2020,11(1):106-113.
 
【9】ASHLEY J, SHAHBAZI M A, KANT K, et al. Molecularly imprinted polymers for sample preparation and biosensing in food analysis:Progress and perspectives[J]. Biosensors and Bioelectronics, 2017,91:606-615.
 
【10】SONG X Q, ZHOU T, LIU Q Y, et al. Molecularly imprinted solid-phase extraction for the determination of ten macrolide drugs residues in animal muscles by liquid chromatography-tandem mass spectrometry[J]. Food Chemistry, 2016,208:169-176.
 
【11】MAR AC'G M, KUPKA T, WIECZOREK P P, et al. Computational modeling of molecularly imprinted polymers as a green approach to the development of novel analytical sorbents[J]. Trends in Analytical Chemistry, 2018,98:64-78.
 
【12】戴芳芳.溴氰菊酯电化学快速检测及分子印迹预组装体系研究[D].重庆:西南大学, 2016.
 
【13】尹小英,衷友泉,江一帆,等.分子印迹聚合反应中功能单体与模板分子间作用力的光谱分析[J].光谱学与光谱分析, 2010,30(8):2211-2214.
 
【14】FARRINGTON K, MAGNER E, REGAN F. Predicting the performance of molecularly imprinted polymers:Selective extraction of caffeine by molecularly imprinted solid phase extraction[J]. Analytica Chimica Acta, 2006,566(1):60-68.
 
【15】LIU W, GUO Y M, LUO J, et al. A molecularly imprinted polymer based a lab-on-paper chemiluminescence device for the detection of dichlorvos[J]. Spectrochimica Acta, Part A:Molecular and Biomolecular Spectroscopy, 2015,141:51-57.
 
【16】LUO X P, LI C Z, DUAN Y Q, et al. Molecularly imprinted polymer prepared by Pickering emulsion polymerization for removal of acephate residues from contaminated waters[J]. Journal of Applied Polymer Science, 2016,133(15):43126.
 
【17】HASHEMI-MOGHADDAM H, JEDI D J. Solid-phase microextraction of chlorpyrifos in fruit samples by synthesised monolithic molecularly imprinted polymer fibres[J]. International Journal of Environmental Analytical Chemistry, 2015,95(1):33-44.
 
【18】MOTAHARIAN A, MOTAHARIAN F, ABNOUS K, et al. Molecularly imprinted polymer nanoparticles-based electrochemical sensor for determination of diazinon pesticide in well water and apple fruit samples[J]. Analytical and Bioanalytical Chemistry, 2016,408(24):6769-6779.
 
【19】MARTINS N, CARREIRO E P, SIMOES M, et al. An emerging approach for the targeting analysis of dimethoate in olive oil:The role of molecularly imprinted polymers based on photoiniferter induced "living" radical polymerization[J]. Reactive&Functional Polymers, 2015,86:37-46.
 
【20】YE T, YIN W X, ZHU N X, et al. Colorimetric detection of pyrethroid metabolite by using surface molecularly imprinted polymer[J]. Sensors&Actuators, B:Chemical, 2018,254:417-423.
 
【21】LI Y G, ZHANG L, DANG Y Y, et al. A robust electrochemical sensing of molecularly imprinted polymer prepared by using bifunctional monomer and its application in detection of cypermethrin[J]. Biosensors and Bioelectronics, 2018,127:207-214.
 
【22】QIU H M, LUO C N, SUN M, et al. A novel chemiluminescence sensor for determination of quercetin based on molecularly imprinted polymeric microspheres[J]. Food Chemistry, 2012,134(1):469-473.
 
【23】CHEN L G, LI B. Determination of imidacloprid in rice by molecularly imprinted-matrix solid-phase dispersion with liquid chromatography tandem mass spectrometry[J]. Journal of Chromatography B:Analytical Technologies in the Biomedical and Life Sciences, 2012,897:32-36.
 
【24】KUMAR S, KARFA P, MADHURI R, et al. Designing of fluorescent and magnetic imprinted polymer for rapid, selective and sensitive detection of imidacloprid via activators regenerated by the electron transfer-atom transfer radical polymerization (ARGET-ATRP) technique[J]. Journal of Physics and Chemistry of Solids, 2018,116:222-233.
 
【25】ZHANG M, ZHAO H T, XIE T J, et al. Molecularly imprinted polymer on graphene surface for selective and sensitive electrochemical sensing imidacloprid[J]. Sensors&Actuators, B:Chemical, 2017,252:991-1002.
 
【26】XIE T J, ZHANG M, CHEN P, et al. A facile molecularly imprinted electrochemical sensor based on graphene:Application to the selective determination of thiamethoxam in grain[J]. RSC Advances, 2017,7(62):38884-38894.
 
【27】ABDEL-GHANY M F, HUSSEIN L A, EL AZAB N F. Novel potentiometric sensors for the determination of the dinotefuran insecticide residue levels in cucumber and soil samples[J]. Talanta, 2017,164:518-528.
 
【28】HE S N, ZHANG L P, BAI S K, et al. Advances of molecularly imprinted polymers (MIP) and the application in drug delivery[J]. European Polymer Journal, 2021,143:110179.
 
【29】ARIA M M, SORRIBE-SORIANO A, JAFARI M T, et al. Uptake and translocation monitoring of imidacloprid to chili and tomato plants by molecularly imprinting extraction-ion mobility spectrometry[J].Microchemical Journal, 2018,144:195-202.
 
【30】BCA B, PENG L B, XL B, et al. Molecularly imprinted polymers for electrochemical detection and analysis:Progress and perspectives[J].Journal of Materials Research and Technology, 2020,9(6):12568-12584.
 
【31】ZHANG W, LIU C, HAN K G, et al. A signal on-off ratiometric electrochemical sensor coupled with a molecular imprinted polymer for selective and stable determination of imidacloprid[J]. Biosensors and Bioelectronics, 2020,154:112091.
 
【32】LI H J, WANG Y, LI Y, et al. Fabrication of pollutant-resistance SERS imprinted sensors based on SiO2@TiO2@Ag composites for selective detection of pyrethroids in water[J]. Journal of Physics and Chemistry of Solids, 2020,138:109254.
 
【33】WACKERLIG J, LIEBERZEIT P A. Molecularly imprinted polymer nanoparticles in chemical sensing-Synthesis, characterisation and application[J]. Sensors&Actuators, B:Chemical, 2015,46:144-157.
 
【34】GHANI S M, REZAEI B, JAMEI H R, et al. Preparation and comparison of molecularly imprinted polymer fluorimetric nanoprobe based on polymer dots and carbon quantum dots for determination of acetamiprid using response surface method[J]. Microchimica Acta, 2020,187(5):1-8.
 
【35】郭庆生.基于量子点的荧光传感器用于生物分析研究[D].南京:东南大学, 2017.
 
【36】MURPHY C J. Peer reviewed:Optical sensing with quantum dots[J]. Analytical Chemistry, 2002,74(19):520-526.
 
【37】FAN Y, LIU L, SUN D L, et al. "Turn-off" fluorescent data array sensor based on double quantum dots coupled with chemometrics for highly sensitive and selective detection of multicomponent pesticides[J]. Analytica Chimica Acta, 2016,916:84-91.
 
【38】ZHENG Z, ZHOU Y, LI X, et al. Highly-sensitive organophosphorous pesticide biosensors based on nanostructured films of acetylcholinesterase and CdTe quantum dots[J]. Biosens&Bioelectron, 2011,26:3081-3085.
 
【39】LIU Q, WANG K, HUAN J, et al. Graphene quantum dots enhanced electrochemiluminescence of cadmium sulfide nanocrystals for ultrasensitive determination of pentachlorophenol[J]. The Analyst, 2014,139(11):2912-2918.
 
【40】REN X H, LIU H C, CHEN L G. Fluorescent detection of chlorpyrifos using Mn (Ⅱ)-doped ZnS quantum dots coated with a molecularly imprinted polymer[J]. Microchimica Acta, 2015,182(1/2):193-200.
 
【41】YAN X, LI H X, WANG X Y, et al. A novel fluorescence probing strategy for the determination of parathion-methyl[J]. Talanta, 2015,131:88-94.
 
【42】SUN Y P, ZHOU B, LIN Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. Journal of the American Chemical Society, 2006,128(24):7756-7757.
 
【43】HOU H, BANKS C E, JING M, et al. Sodium-ion batteries:Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life[J]. Advanced Materials, 2015,27:7861-7866.
 
【44】ANSARI S, MASOUM S. Recent advances and future trends on molecularly imprinted polymer-based fluorescence sensors with luminescent carbon dots[J]. Talanta, 2020,223:121411.
 
【45】AMJADI M, JALILI R. Molecularly imprinted mesoporous silica embedded with carbon dots and semiconductor quantum dots as a ratiometric fluorescent sensor for diniconazole[J]. Biosensors and Bioelectronics, 2017,96:121-126.
 
【46】LI H X, YAN X, LU G Y, et al. Carbon dot-based bioplatform for dual colorimetric and fluorometric sensing of organophosphate pesticides[J]. Sensors&Actuators, B:Chemical, 2018,260:563-570.
 
【47】YANG M L, LIU M W, WU Z P, et al. Carbon dots co-doped with nitrogen and chlorine for "off-on" fluorometric determination of the activity of acetylcholinesterase and for quantification of organophosphate pesticides[J]. Microchimica Acta, 2019,186(8):1-8.
 
【48】SONG W, ZHANG H J, LIU Y H, et al. A new fluorescence probing strategy for the detection of parathion-methyl based on N-doped carbon dots and methyl parathion hydrolase[J]. Chinese Chemical Letters, 2017,28(8):1675-1680.
 
【49】WEI J C, YANG Y, DONG J Y, et al. Fluorometric determination of pesticides and organophosphates using nanoceria as a phosphatase mimic and an inner filter effect on carbon nanodots[J]. Microchimica Acta, 2019,186(2):1-9.
 
【50】HUANG S, YAO J D, CHU X, et al. One-step facile synthesis of nitrogen-doped carbon dots:A ratiometric fluorescent probe for evaluation of acetylcholinesterase activity and detection of organophosphorus pesticides in tap water and food[J]. Journal of Agricultural and Food Chemistry, 2019,67(40):11244-11255.
 
【51】LI H T, SUN C H, VIJAYARAGHAVAN R, et al. Long lifetime photoluminescence in N, S co-doped carbon quantum dots from an ionic liquid and their applications in ultrasensitive detection of pesticides[J]. Carbon, 2016,104:33-39.
 
【52】YAN X, LI H X, HAN X S, et al. A ratiometric fluorescent quantum dots based biosensor for organophosphorus pesticides detection by inner-filter effect[J]. Biosensors and Bioelectronics, 2015,74:277-283.
 
【53】YAN X, LI H X, ZHENG W S, et al. Visual and fluorescent detection of tyrosinase activity by using a dual-emission ratiometric fluorescence probe[J]. Analytical Chemistry, 2015,87(17):8904-9.
 
【54】YI Y, ZHU G, LIU C Y, et al. A label-free silicon quantum dots-based photoluminescence sensor for ultrasensitive detection of pesticides[J]. Analytical Chemistry, 2013,85(23):11464-11470.
 
【55】RODRIGUES S S M, RIBEIRO D S M, SOARES J X, et al. Application of nanocrystalline CdTe quantum dots in chemical analysis:Implementation of chemo-sensing schemes based on analyte-triggered photoluminescence modulation[J]. Coordination Chemistry Reviews, 2017,330(1):127-143.
 
【56】ANANTH D A, RAMESHKUMAR A, JEYADEVI R, et al. Antibacterial potential of rutin conjugated with thioglycolic acid capped cadmium telluride quantum dots (TGA-CdTe QDs)[J]. Spectrochimica Acta, Part A:Molecular and Biomolecular Spectroscopy, 2015,138:684-692.
 
【57】NARAYANAN S S, SINHA S S, VERMA P K, et al. Ultrafast energy transfer from 3-mercaptopropionic acid-capped CdSe/ZnS QDs to dye-labelled DNA[J]. Chemical Physics Letters, 2008,463(1):160-165.
 
【58】BARDAJEE G R, HOOSHYAR Z. Optical properties of water soluble CdSe quantum dots modified by a novel biopolymer based on sodium alginate[J]. Spectrochimica Acta, Part A:Molecular and Biomolecular Spectroscopy, 2013,114:622-626.
 
【59】GUO J J, ZHANG Y, LUO Y L, et al. Efficient fluorescence resonance energy transfer between oppositely charged CdTe quantum dots and gold nanoparticles for turn-on fluorescence detection of glyphosate[J]. Talanta, 2014,125:385-392.
 
【60】QU F, ZHOU X, XU J, et al. Luminescence switching of CdTe quantum dots in presence of p-sulfonatocalix
 
【61】arene to detect pesticides in aqueous solution[J]. Talanta, 2009,78(4/5):1359-1363.
 
【62】ZHANG K, MEI Q S, GUAN G J, et al. Ligand replacement induced fluorescence switch of quantum dots for ultrasensitive detection of organophosphorothioate pesticides[J]. Analytical Chemistry, 2010,82(22):9579-9586.
 
【63】JIA M F, ZHANG Z, LI J H, et al. A molecular imprinting fluorescence sensor based on quantum dots and a mesoporous structure for selective and sensitive detection of 2,4-dichlorophenoxyacetic acid[J]. Sensors&Actuators, B:Chemical, 2017,252:934-943.
 
【64】DURÁN G M, CONTENTO A M, RÍOS Á. Use of Cdse/ZnS quantum dots for sensitive detection and quantification of paraquat in water samples[J]. Analytica Chimica Acta, 2013,801:84-90.
 
【65】WALIA S K, ACHARYA A. Fluorescent cadmium sulfide nanoparticles for selective and sensitive detection of toxic pesticides in aqueous medium[J]. Journal of Nanoparticle Research, 2014,16(12):1-10.
 
【66】NASIRI M, AHMADZADEH H, AMIRI A. Sample preparation and extraction methods for pesticides in aquatic environments:A review[J]. Trends in Analytical Chemistry, 2020,123:115772.
 
【67】MEHRZAD-SAMARIN M, FARIDBOD F, GANJALI M R. A luminescence nanosensor for Ornidazole detection using graphene quantum dots entrapped in silica molecular imprinted polymer[J]. Spectrochimica Acta, Part A:Molecular and Biomolecular Spectroscopy, 2019,206:430-436.
 
【68】YANG X, CHEN J, LIU H, et al. Molecularly imprinted polymers based on zeolite imidazolate framework-8 for selective removal of 2,4-dichlorophenoxyacetic acid[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019,570:244-250.
 
【69】BALA R, DHINGRA S, KUMAR M, et al. Detection of organophosphorus pesticide-Malathion in environmental samples using peptide and aptamer based nanoprobes[J].Chemical Engineering Journal, 2017,311:111-116.
 
【70】刘仁杰,赵悦,王玉华,等.有机磷农药残留现状及去除方法的研究进展[J].食品工业, 2019,40(9):299-302.
 
【71】PUNDIR C S, ASHISH M, PREETY A. Bio-sensing of organophosphorus pesticides:A review[J].Biosensors&Bioelectronics, 2019,140:111348.
 
【72】BALA R, KUMAR M, BANSAL K, et al. Ultrasensitive aptamer biosensor for malathion detection based on cationic polymer and gold nanoparticles[J]. Biosensors and Bioelectronics, 2016,85:445-449.
 
【73】TANG J, XIANG L. Development of a probe based on quantum dots embedded with molecularly imprinted polymers to detect parathion[J]. Polish Journal of Environmental Studies, 2016,25(2):787-793.
 
【74】LI S H, LUO J H, YIN G H, et al. Selective determination of dimethoate via fluorescence resonance energy transfer between carbon dots and a dye-doped molecularly imprinted polymer[J]. Sensors&Actuators, B:Chemical, 2015,206:14-21.
 
【75】LI H B, LI Y L, CHENG J. Molecularly imprinted silica nanospheres embedded CdSe quantum dots for highly selective and sensitive optosensing of pyrethroids[J]. Chemistry of Materials, 2010,22(8):2451-2457.
 
【76】PANDEY V, CHAUHAN A, PANDEY G, et al. Optical sensing of 3-phenoxybenzoic acid as a pyrethroid pesticides exposure marker by surface imprinting polymer capped on manganese-doped zinc sulfide quantum dots[J]. Analytical Chemistry Research, 2015,5:21-27.
 
【77】HUANG S Y, TAN L, ZHANG L, et al. Molecularly imprinted mesoporous silica embedded with perovskite CsPbBr 3 quantum dots for the fluorescence sensing of 2,2-dichlorovinyl dimethyl phosphate[J]. Sensors&Actuators, B:Chemical, 2020,325:128751.
 
【78】WEI J, YUAN X, ZHANG Y, et al. Ionic liquid-sensitized molecularly imprinted polymers based on heteroatom co-doped quantum dots functionalized graphene for sensitive detection of λ-cyhalothrin[J]. Analytica Chimica Acta, 2020,1136:9-18.
 
【79】LI X J, JIAO H F, SHI X Z, et al. Development and application of a novel fluorescent nanosensor based on FeSe quantum dots embedded silica molecularly imprinted polymer for the rapid optosensing of cyfluthrin[J]. Biosensors and Bioelectronics, 2018,99:268-273.
 
【80】LIU Y, CAO N, GUI W Y, et al. Nitrogen-doped graphene quantum dots-based fluorescence molecularly imprinted sensor for thiacloprid detection[J]. Talanta, 2018,183:339-344.
 
相关信息
   标题 相关频次
 适配体功能化分子印迹聚合物的研究进展
 17
 粮食中农药残留检测的主要前处理方法的介绍及应用
 12
 分子印迹技术在新烟碱类杀虫剂残留检测中的应用
 10
 基于微机电加工技术芯片的量热式生物传感器的测热性能研究
 7
 基于功能核酸的纸基微流控芯片测定重金属离子的研究进展
 6
 双酶显色-紫外-可见分光光度法测定牛奶中组胺与腐胺的含量
 6
 Al2O3/Cu复合材料的研究进展
 2
 CdTe量子点荧光猝灭法测定甲醛
 2
 TiO2抗菌涂层制备方法的研究进展
 2
 阿散酸磁性分子印迹聚合物的制备及其应用
 2
 薄的深色表面层金相试样的制备方法
 2
 沉淀聚合法制备莱克多巴胺分子印迹聚合物
 2
 船舶维修与再制造用Mo2NiB2基金属陶瓷及涂层的制备和研究现状
 2
 磁性双酚A分子印迹材料的制备及性能研究
 2
 顶空固相微萃取-气相色谱-质谱法测定二苯甲酮类防晒剂中残留溶剂
 2
 分子印迹电化学传感器测定赛诺吗嗪残留
 2
 分子印迹电化学传感器研究进展
 2
 分子印迹电化学发光传感器的制备及其对卡那霉素的测定应用
 2
 分子印迹固相萃取-高效液相色谱法测定食品中苏丹红Ⅰ-Ⅳ
 2
 分子印迹基质分散固相萃取前处理-气相色谱-质谱法测定塑料玩具中全氟辛烷磺酸的含量
 2
 分子印迹基质固相分散-超高效液相色谱法测定儿童玩具中双酚A
 2
 分子印迹聚合物-固相萃取-高效液相色谱法测定地表水中莠去津
 2
 高效液相色谱-串联质谱法测定血液中草铵膦及其代谢物3-甲基膦基-丙酸的含量
 2
 固相萃取-液相色谱-串联质谱法测定儿童消费品中14种酚类物质的迁移量
 2
 光致阴极保护研究进展
 2
 贵金属溅射靶材的研究进展
 2
 华法林分子印迹聚合物的制备及其吸附性能的分析
 2
 金相试样制备技巧及具体方法
 2
 泡沫钛制备工艺及应用的研究进展
 2
 碳纳米管/酚醛树脂基复合材料的研究进展
 2