搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
放电等离子烧结TiCN/W-Cu复合材料的高温摩擦磨损性能
          
High Temperature Friction and Wear Properties of TiCN/W-Cu Composites by Spark Plasma Sintering

摘    要
以铜粉、TiCN粉以及由化学镀法制备的铜包覆钨复合粉末为原料,采用放电等离子烧结技术制备TiCN/W-Cu复合材料,研究了复合材料的组织、硬度和高温摩擦磨损性能。结果表明:复合材料组织致密,细小的TiCN颗粒弥散分布在钨和铜相界处;复合材料的相对密度为97.9%,硬度为282.7 HV,分别比W-Cu合金提高了0.6%和22.2%,常温与高温下的磨损率均低于W-Cu合金,25℃下复合材料的磨损机理以磨粒磨损为主,随着温度的升高,转变为疲劳磨损、黏着磨损与氧化磨损。
标    签 放电等离子烧结   TiCN/W-Cu复合材料   高温耐磨性能   spark plasma sintering   TiCN/W-Cu composite   high temperature wear resistance  
 
Abstract
Taking copper power, TiCN power and copper-coated tungsten composite powder by chemical plating as raw materials, TiCN/W-Cu composites was prepared by spark plasma sintering technology. The microstructure, hardness and high temperature friction and wear properties of the composite were studied. The results show that the microstructure of the composites was compact, and the fine TiCN particles were dispersed at boundaries between tungsten and copper phase. The relative density and hardness of the composites were 97.9% and 282.7 HV, which were 0.6% and 22.2% higher than those of W-Cu alloy, respectively. The wear rate of the composite was lower than that of W-Cu alloy at room temperature and high temperature; the wear mechanism of composites at 25℃ was abrasive wear and changed to fatigue wear, adhesive wear and oxidation wear with increasing temperature.

中图分类号 TB333   DOI 10.11973/jxgccl202206003

 
  中国光学期刊网论文下载说明


所属栏目 试验研究

基金项目 福建省科技攻关项目(2014H0009);福建省自然科学基金资助项目(2018J01269);福建工程学院基金资助项目(GY-21306)

收稿日期 2022/3/1

修改稿日期 2022/5/18

网络出版日期

作者单位点击查看

备注黄友庭(1962-),男,福建莆田人,副教授,博士

引用该论文: HUANG Youting,LI Xiaowei,ZHA Yuanfei,ZHOU Xiaolong,HUANG Xin,HUA Nengbin,CHEN Wenzhe,PENG Dongliang. High Temperature Friction and Wear Properties of TiCN/W-Cu Composites by Spark Plasma Sintering[J]. Materials for mechancial engineering, 2022, 46(6): 11~20
黄友庭,李晓伟,查元飞,周晓龙,黄歆,花能斌,陈文哲,彭栋梁. 放电等离子烧结TiCN/W-Cu复合材料的高温摩擦磨损性能[J]. 机械工程材料, 2022, 46(6): 11~20


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】CHEN P G,SHEN Q,LUO G Q,et al.Effect of interface modification by Cu-coated W powders on the microstructure evolution and properties improvement for Cu-W composites[J].Surface and Coatings Technology,2016,288:8-14.
 
【2】CHEN W S,LUO G Q,LI M J,et al.Effect of 2,2'-dipyridyl on the plating rate,microstructure and performance of copper-coated tungsten composite powders prepared using electroless plating[J].Applied Surface Science,2014,301:85-90.
 
【3】DAS J,CHAKRABORTY A,BAGCHI T P,et al.Improvement of machinability of tungsten by copper infiltration technique[J].International Journal of Refractory Metals and Hard Materials,2008,26(6):530-539.
 
【4】DONG L L,AHANGARKANI M,CHEN W G,et al.Recent progress in development of tungsten-copper composites:Fabrication,modification and applications[J].International Journal of Refractory Metals and Hard Materials,2018,75:30-42.
 
【5】DONG L L,HUO W T,AHANGARKANI M,et al.Microstructural evaluation and mechanical properties of in situ WC/W-Cu composites fabricated by rGO/W-Cu spark plasma sintering reaction[J].Materials&Design,2018,160:1196-1207.
 
【6】ECHLIN M P,MOTTURA A,WANG M,et al.Three-dimensional characterization of the permeability of W-Cu composites using a new "TriBeam" technique[J].Acta Materialia,2014,64:307-315.
 
【7】DELANNAY F,MISSIAEN J M.Assessment of solid state and liquid phase sintering models by comparison of isothermal densification kinetics in W and W-Cu systems[J].Acta Materialia,2016,106:22-31.
 
【8】HE G,XU K Y,GUO S B,et al.Preparation of tungsten fiber reinforced-tungsten/copper composite for plasma facing component[J].Journal of Nuclear Materials,2014,455(1/2/3):225-228.
 
【9】高思远,韩翠柳,何超,等.放电等离子烧结制备Cu-15Cr-15W复合材料[J].粉末冶金工业,2020,30(2):8-13. GAO S Y,HAN C L,HE C,et al.Preparation of Cu-15Cr-15W composites by SPS[J].Powder Metallurgy Industry,2020,30(2):8-13.
 
【10】CHEN X L,LUO L M,XIANG Z,et al.Effect of silver element on microstructure and properties of W-30Cu/TiC composites[J].Journal of Wuhan University of Technology (Materials Science),2018,33(6):1511-1515.
 
【11】HUANG L M,LUO L M,DING X Y,et al.Effects of simplified pretreatment process on the morphology of W-Cu composite powder prepared by electroless plating and its sintering characterization[J].Powder Technology,2014,258:216-221.
 
【12】CAO J,LIU J X,LIU X W,et al.Effect of the distribution state of transition phase on the mechanical properties and failure mechanisms of the W-Mo-Cu alloy by tuning elements content[J].Journal of Alloys and Compounds,2020,827:154333.
 
【13】LIANG C P,WU C Y,FAN J L,et al.Structural,thermodynamic,and mechanical properties of WCu solid solutions[J].Journal of Physics and Chemistry of Solids,2017,110:401-408.
 
【14】LIANG S H,CHEN L,YUAN Z X,et al.Infiltrated W-Cu composites with combined architecture of hierarchical particulate tungsten and tungsten fibers[J].Materials Characterization,2015,110:33-38.
 
【15】LUO L M,LU Z L,HUANG X M,et al.Fabrication of W-Cu/La2O3 composite powder with a novel pretreatment prepared by electroless plating and its sintering characterization[J].International Journal of Refractory Metals and Hard Materials,2015,48:1-4.
 
【16】MABUCHI M,OKAMOTO K,SAITO N,et al.Tensile properties at elevated temperature of W-1% La2O3[J].Materials Science and Engineering:A,1996,214(1/2):174-176.
 
【17】QIAN K,LIANG S H,XIAO P,et al.In situ synthesis and electrical properties of CuW-La2O3 composites[J].International Journal of Refractory Metals and Hard Materials,2012,31:147-151.
 
【18】SHKODICH N F,ROGACHEV A S,VADCHENKO S G,et al.Bulk Cu-Cr nanocomposites by high-energy ball milling and spark plasma sintering[J].Journal of Alloys and Compounds,2014,617:39-46.
 
【19】CHEN W G,FENG P,DONG L L,et al.The process of surface carburization and high temperature wear behavior of infiltrated W-Cu composites[J].Surface and Coatings Technology,2018,353:300-308.
 
【20】殷婷,田保红,张毅,等.放电等离子烧结Cu-W-TiC复合材料的制备及其热变形特性[J].中国有色金属学报,2015,25(9):2445-2452. YIN T,TIAN B H,ZHANG Y,et al.Preparation of Cu-W-TiC composites and its hot deformation characteristics[J].The Chinese Journal of Nonferrous Metals,2015,25(9):2445-2452.
 
【21】ZHANG C C,LUO G Q,ZHANG J,et al.Synthesis and thermal conductivity improvement of W-Cu composites modified with WC interfacial layer[J].Materials&Design,2017,127:233-242.
 
【22】ZHANG Y H,ZHUO L C,ZHAO Z,et al.The influence of pre-sintering temperature on the microstructure and properties of infiltrated ultrafine-grained tungsten-copper composites[J].Journal of Alloys and Compounds,2020,823:153761.
 
【23】ZHENG L L,LIU J X,LI S K,et al.Investigation on preparation and mechanical properties of W-Cu-Zn alloy with low W-W contiguity and high ductility[J].Materials&Design,2015,86:297-304.
 
【24】曾绍连,李卫.耐热铸钢和低碳高铬铸铁导卫磨损研究[J].铸造,2008,57(8):814-817. ZENG S L,LI W.Wear of heat resistant cast steel and high chromium cast iron guide pieces[J].China Foundry,2008,57(8):814-817.
 
【25】康达,张宏,马兆光,等.航天用钨渗铜产品水浸超声检测研究[J].航天制造技术,2018(6):22-25. KANG D,ZHANG H,MA Z G,et al.Water-immersion ultrasonic testing of copper infiltrated tungsten material used in aerospace[J].Aerospace Manufacturing Technology,2018(6):22-25.
 
【26】李璞,蒲屹,牟亦颉,等.石墨镀Ni对石墨/Cu基复合材料摩擦性能和腐蚀性能的影响[J].特种铸造及有色合金,2022,42(3):350-354. LI P,PU Y,MOU Y J,et al.Effects of nickel coating on tribological and corrosive behavior of the copper-matrix/graphite composites[J].Special Casting&Nonferrous Alloys,2022,42(3):350-354.
 
【27】尚群超.大型耐磨板型件液态模锻及其组织性能研究[D].北京:北京交通大学,2019. SHANG Q C.A study on microstructure and properties of large wear-resistant board parts prepared by squeeze casting[D].Beijing:Beijing Jiaotong University,2019.
 
【28】王芳,蒋建伟,门建兵.钨铜变密度聚能射流侵彻模型及应用[J].兵工学报,2018,39(12):2289-2297. WANG F,JIANG J W,MEN J B.A penetration model for tunsgsten-copper shaped charge jet with non-constant density[J].Acta Armamentarii,2018,39(12):2289-2297.
 
【29】王海斗,徐滨士,魏世丞,等.导卫板失效分析及表面喷涂层的耐磨性能[J].金属热处理,2005,30(8):39-41. WANG H D,XU B S,WEI S C,et al.Failure analysis of guide piece and wear resistance of the thermal sprayed coating[J].Heat Treatment of Metals,2005,30(8):39-41.
 
【30】邢宇轩.ZrC增强钨渗铜复合材料制备及其性能研究[D].哈尔滨:哈尔滨理工大学,2020. XING Y X.Preparation process and properties of modified ZrC reinforced tungsten-copper composites[D].Harbin:Harbin University of Science and Technology,2020.
 
【31】杨晓红,范志康,梁淑华,等.TiC对CuW触头材料组织与性能的影响[J].稀有金属材料与工程,2007,36(5):817-821. YANG X H,FAN Z K,LIANG S H,et al.Effects of TiC on microstructures and properties of CuW electrical contact materials[J].Rare Metal Materials and Engineering,2007,36(5):817-821.
 
【32】张春丽.铜及硫化银纳米添加剂摩擦学性能研究[D].开封:河南大学,2013. ZHANG C L.Tribological properties of copper and silver sulfide nanomaterials as lubricant additives[D].Kaifeng:Henan University,2013.
 
【33】郑博文.原位自生TiC、TiB/Ti6Al4V复合材料组织调控与摩擦行为[D].沈阳:沈阳工业大学,2020. ZHENG B W.Microstructure control and wear behavior of in situ TiC,TiB/Ti6Al4V matrix composites[D].Shenyang:Shenyang University of Technology,2020.
 
相关信息
   标题 相关频次
 梯度结构铜钨基碳化物复合材料的制备及其高温压缩性能
 4
 AlN含量对AlN/Zr-Cu复合材料性能的影响
 2
 CoCrFeNiWx高熵合金黏结剂对WC硬质合金显微组织和力学性能的影响
 2
 CuW80/Cu整体式触头尾部铜强化规律
 2
 MoSi2/不锈钢的梯度连接及其接头组织
 2
 Ti3AlC2/Cu复合材料的制备与性能
 2
 TiAl基合金的制备及其摩擦磨损性能
 2
 不同表面处理工艺下H13钢的高温耐磨性能
 2
 超细晶高氮奥氏体不锈钢的制备及其性能
 2
 淬火温度和回火工艺对4Cr5Mo2V钢高温耐磨性能的影响
 2
 法向载荷对Ti40Zr10Cu38Pd12块体非晶合金微米划痕和纳米压痕行为的影响
 2
 放电等离子烧结42CrMo钢/黄铜双金属复合接头的显微组织
 2
 放电等离子烧结工艺制备Ni60B镍基自熔合金
 2
 放电等离子烧结聚晶立方氮化硼刀具的性能
 2
 放电等离子烧结钼和钨基体上(l—x)Ti3SiC2+xSiC层状复合材料的显微组织
 2
 放电等离子烧结纳米复合Ti(C,N)基金属陶瓷
 2
 放电等离子烧结温度对Fe-Si/MnZn(Fe2O4)2软磁复合材料组织与磁性能的影响
 2
 放电等离子烧结温度对Ti-45Al-6Nb-0.3W合金显微组织和力学性能的影响
 2
 放电等离子烧结制备M42粉末高速钢/45钢双金属复合材料
 2
 放电等离子烧结制备碳纳米管块材的低温电输运性能
 2
 粉体粒径对氧化锆陶瓷断裂韧性的影响
 2
 固溶冷却方式对10Ni3MnCuAl模具钢组织和性能的影响
 2
 钼、镍含量对马氏体不锈钢硬面药芯焊丝堆焊层组织和性能的影响
 2
 三元层状化合物Ti2SC的制备及其力学性能
 2
 烧结温度对放电等离子烧结AlCoCrFeNi2.1高熵合金性能的影响
 2
 碳氮共渗与磁化电解渗硫复合处理后20CrMnTi钢的摩擦磨损性能
 2
 4130钢锻件超声检测不合格原因
 1
 718钢模块内部缺陷产生原因
 1
 Al0.3CoCrFeNi纳米晶高熵合金在碱性溶液中的电化学性能
 1
 Eu3+:SnO2微晶玻璃的显微结构与光致发光性能
 1