扫一扫 加微信
首页 > 期刊论文 > 论文摘要
微硅固井水泥石的抗CO2腐蚀性能
          
CO2 Corrosion Resistance of Cementing Stone with Micro Silicon

摘    要
通过测试腐蚀前后固井水泥石的渗透率、抗压强度和腐蚀深度,评价了不同微硅添加量的固井水泥石的耐蚀性,采用扫描电镜(SEM)和X射线衍射仪(XRD),分析了微硅固井水泥石的抗CO2腐蚀性能。结果表明:与空白固井水泥浆相比,添加3%、6%和9%微硅的固井水泥浆的稠化时间缩短了11~38 min,失水量降低了8~27 mL,自由液降低为0,微硅固井水泥石的抗压强度和抗折强度分别提高了11.1%~46.7%和49.8%~104.9%,渗透率降低了0.026~0.046 mD,微硅促进了固井水泥浆的水化过程;当微硅添加量为9%时,腐蚀21 d后微硅固井水泥石的抗压强度衰退率和渗透率变化率分别为8%和16%,微硅的添加提高了水泥石的抗CO2腐蚀性能,且微硅添加量越高,固井水泥石的抗CO2腐蚀性能越好;微硅的添加提高了固井水泥石的致密度,在一定程度上降低了固井水泥石的腐蚀程度。
标    签 微硅   固井水泥石   二氧化碳   腐蚀   micro silicon   cementing stone   carbon dioxide   corrosion  
 
Abstract
By testing the permeability, compressive strength and corrosion depth of cementing stone before and after corrosion, the corrosion resistance of cementing stone with different micro-silicon additions was evaluated. Using scanning electron microscope (SEM) and X-ray diffractometer (XRD), the CO2 corrosion resistance of micro-silicon cementing stone was analyzed. The results showed that compared with the blank cementing stone, the thickening time of cementing stone with 3%, 6% and 9% micro-silicon added was shortened by 11-38 min, the water loss was reduced by 8-27 mL, and the free liquid was reduced to 0, compressive strength and flexural strength of micro-silica cementing cement were increased by 11.1%-46.7% and 49.8%-104.9%, respectively, and permeability was reduced by 0.026-0.046 mD. When micro-silicon addition amount was 9%, the compressive strength decline rate and permeability change rate of micro-silicon cementing stone after corrosion for 21 days were 8% and 16%, respectively. The addition of micro-silicon improved the CO2 corrosion resistance of cementing stone, and the greater the amount of micro-silicon added, the better the CO2 corrosion resistance of cementing stone. The addition of micro-silicon improved the density of cementing stone and reduced the corrosion degree of cementing stone to a certain extent.

中图分类号 TE256   DOI 10.11973/fsyfh-202209008

 
  中国光学期刊网论文下载说明


所属栏目 试验研究

基金项目 国家科技重大专项课题(2017ZX05032004-004)

收稿日期 2022/2/22

修改稿日期

网络出版日期

作者单位点击查看


引用该论文: FANG Enlou,LIU Shikang,WANG Xuechun,ZHAO Jun,WANG Qiang,SONG Jianjian. CO2 Corrosion Resistance of Cementing Stone with Micro Silicon[J]. Corrosion & Protection, 2022, 43(9): 41


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】刘天恩,贺彦亮,靳盛,等.防H2S和CO2酸性气体腐蚀水泥浆体系研究与应用[J].钻井液与完井液,2014,31(4):68-70,100.
 
【2】陆沛青,刘仍光,杨广国,等.增强油井水泥石抗二氧化碳腐蚀方法[J].材料科学与工程学报,2020,38(4):566-570.
 
【3】张克坚.防腐水泥浆体系技术研究及应用[D].青岛:中国石油大学,2011.
 
【4】赵军,徐璧华,邱汇洋,等.抗高温防CO2和H2S腐蚀水泥浆体系研发与应用[J].中国海上油气,2017,29(3):91-94.
 
【5】OMOSEBI O A,SHARMA M,AHMED R M,et al. Cement degradation in CO2-H2S environment under high pressure-high temperature conditions[C]//SPE Bergen one day seminar. Norway:OnePetro,2017.
 
【6】PARK S,MOON H,KIM J H,et al. Reaction of hydrated cement paste with supercritical carbon dioxide[J]. Construction and Building Materials,2021,281:122615.
 
【7】MAHMOUD A A,ELKATATNY S. Improved durability of Saudi Class G oil-well cement sheath in CO2 rich environments using olive waste[J]. Construction and Building Materials,2020,262:120623.
 
【8】熊钰丹,席方柱. CO2对油井水泥腐蚀的研究进展[J].钻井液与完井液,2011,28(S1):69-71,87.
 
【9】YANG H,CHEN D J,ZHAO H. The corrosion resistant cement system for oil and gas wells[J]. Advanced Materials Research,2011,239/240/241/242:1577-1581.
 
【10】张易航,宋旭辉,许明标,等.固井水泥石腐蚀防治研究进展[J].应用化工,2019,48(10):2450-2455.
 
【11】宋建建,许明标,周俊,等.针状硅灰石微粉改善固井水泥浆性能研究[J].硅酸盐通报,2018,37(8):2656-2661.
 
【12】谢应权.膨胀型零游离水水泥浆性能评价[J].钻井液与完井液,2005,22(S1):63-66,123.
 
【13】彭志刚,张健,邹长军,等.一种环境响应型水泥石的抗CO2腐蚀性能[J].化工进展,2017,36(5):1953-1959.
 
【14】ZHANG J F,YANG J L,LIU K,et al. Carbon dioxide corrosion and corrosion prevention of oil well cement paste matrix in deep wells[J]. Applied Mechanics and Materials,2014,692:433-438.
 
【15】LAU C H,DUONG A,TAOUTAOU S,et al. Successful application of slag based flexible cement for resilient and carbon dioxide corrosion resistance[C]//SPE Oil and Gas India Conference and Exhibition.[S.l.]:SPE,2019:1-13.
 
相关信息
   标题 相关频次
 X80管线钢焊接接头的组织对其超临界CO2腐蚀行为的影响
 4
 YH23-1-18气井采油树立管失效分析
 4
 二氧化碳对发电机内冷水防腐蚀控制的影响
 4
 高温多元热流体注采液中N80钢的腐蚀行为
 4
 四丙氟橡胶和氢化丁腈橡胶的耐CO2腐蚀性能
 4
 某油田地面单井管道腐蚀原因分析
 3
 塔河油田地面集输处理系统腐蚀穿孔原因
 3
 Φ219mm×10.5mm弯管环焊缝穿孔失效分析
 2
 1 000 MPa级超高强度热镀锌钢板耐腐蚀性能
 2
 1050A铝合金模拟海洋大气环境腐蚀行为的中性盐雾试验
 2
 1050A铝合金在模拟海洋大气环境中周浸腐蚀行为
 2
 10号碳钢在NaOH溶液中的腐蚀电化学行为
 2
 12Cr1MoV钢在碱金属硫氯盐中的腐蚀行为
 2
 12Cr-F/M钢在超临界水中的腐蚀行为
 2
 13Cr不锈钢与Ni基合金油管表面擦划伤的腐蚀行为
 2
 14Cr1MoR钢在高温硫环境中的失效行为
 2
 16MnR钢在多种回填材料中的腐蚀行为
 2
 16Mn钢在管输俄罗斯原油析出水中的腐蚀行为
 2
 201型不锈钢在酸性食物模拟环境中的腐蚀行为
 2
 20CrMnTi钢在海洋环境中的腐蚀行为
 2
 20G/316L双金属复合管失效的原因
 2
 20G无缝钢管开裂原因
 2
 20MnCr5钢齿轮表面渗碳层的显微组织
 2
 20号钢在HCl-H2S-H2O溶液中的腐蚀行为
 2
 20号钢在气田站场分离器积液中的腐蚀行为
 2
 220kV钢芯铝绞线断股事故化学分析
 2
 22MnB5热冲压淬火零件的耐腐蚀性能
 2
 2507双相不锈钢钾盐蒸发罐腐蚀的原因分析
 2
 2A12铝合金当量加速腐蚀试验
 2
 2-甲基咪唑啉及其复配缓蚀剂在高硬度电解质水溶液中的缓蚀性能
 2