搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
Fe-10Mn-2Al-0.1C中锰钢的本构模型与热加工图
          
Constitutive Model and Hot Processing Maps of Fe-10Mn-2Al-0.1C Medium Mn Steel

摘    要
使用Gleeble-1500型热机械模拟机在变形温度900~1 100℃、应变速率0.01~10 s-1下对Fe-10Mn-2Al-0.1C (质量分数/%)中锰钢进行热压缩试验,根据试验数据,采用应变补偿法建立试验钢Zener-Hollomon本构模型并进行了试验验证;基于动态材料模型(DMM)建立试验钢在真应变0.2,0.4,0.6,0.8下的热加工图。结果表明:由建立的本构模型预测得到的流动应力与实测应力的相关系数为0.987,说明该模型可用来描述试验钢的热变形行为;由本构模型计算得到当真应变从0.1增加到0.8时,试验钢的热变形激活能从476 kJ·mol-1降低到342 kJ·mol-1;根据热加工图确定试验钢的最佳热加工工艺条件为变形温度900~940℃、应变速率0.01~0.03 s-1和变形温度1 070~1 100℃、应变速率0.1~0.56 s-1,该条件下的功率耗散效率在32%~38%。
标    签 热变形   中锰钢   本构模型   热加工图   hot deformation   medium Mn steel   constitutive model   hot processing map  
 
Abstract
Hot compression tests at deformation temperatures of 900-1 100 ℃ and strain rates of 0.01-10 s-1 were conducted on Fe-10Mn-2Al-0.1C (mass fraction/%) medium Mn steel by using a Gleeble-1500 thermo-mechanical simulator. The Zener-Hollomon constitutive model of the test steel was established by a strain compensation method with the test data, and verified by the tests. The hot processing maps of the test steel at true strains of 0.2, 0.4, 0.6, 0.8 were established on the basis of the dynamic material model (DMM). The results show that the correlation coefficient between the flow stresses predicted by the established constitutive model and the measured stresses was 0.987, indicating that the model can be used to describe the thermal deformation behavior of the test steel. According to the calculation by the constitutive model, when the true strain increased from 0.1 to 0.8, the hot deformation activation energy of the test steel was reduced from 476 kJ·mol-1 to 342 kJ·mol-1. According to the hot processing maps, the optimal hot working conditions of the test steel were determined as deformation temperatures of 900-940 ℃ and strain rates of 0.01-0.03 s-1, and deformation temperatures of 1 070-1 100 ℃ and strain rates of 0.1-0.56 s-1; the power dissipation efficiency under these conditions was 32%-38%.

中图分类号 TG142.1   DOI 10.11973/jxgccl202209014

 
  中国光学期刊网论文下载说明


所属栏目 物理模拟与数值模拟

基金项目 国家自然科学基金资助项目(51901078,51974134);河北省人力资源和社会保障厅引进留学回国人员项目(C20200357);河北省科技重大专项项目(21281008Z)

收稿日期 2021/8/12

修改稿日期 2022/7/28

网络出版日期

作者单位点击查看

备注吴翼铭(1997-),男,河北唐山人,硕士研究生

引用该论文: WU Yiming,WANG Yan,ZHANG Minghe,FENG Yunli. Constitutive Model and Hot Processing Maps of Fe-10Mn-2Al-0.1C Medium Mn Steel[J]. Materials for mechancial engineering, 2022, 46(9): 82~88
吴翼铭,王焱,张明赫,冯运莉. Fe-10Mn-2Al-0.1C中锰钢的本构模型与热加工图[J]. 机械工程材料, 2022, 46(9): 82~88


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】HAN J,LEE S J,JUNG J G,et al.The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe-9Mn-0.05C steel[J].Acta Materialia,2014,78:369-377.
 
【2】GUO Z K,LI L F.Influences of alloying elements on warm deformation behavior of high-Mn TRIP steel with martensitic structure[J].Materials & Design,2016,89:665-675.
 
【3】ZHANG M H,LI L F,DING J,et al.Temperature-dependent micromechanical behavior of medium-Mn transformation-induced-plasticity steel studied by in situ synchrotron X-ray diffraction[J].Acta Materialia,2017,141:294-303.
 
【4】LUO H W,DONG H,HUANG M X.Effect of intercritical annealing on the Lüders strains of medium Mn transformation-induced plasticity steels[J].Materials & Design,2015,83:42-48.
 
【5】NAKADA N,MIZUTANI K,TSUCHIYAMA T,et al.Difference in transformation behavior between ferrite and austenite formations in medium manganese steel[J].Acta Materialia,2014,65:251-258.
 
【6】WANG C,CAO W Q,SHI J,et al.Deformation microstructures and strengthening mechanisms of an ultrafine grained duplex medium-Mn steel[J].Materials Science and Engineering:A,2013,562:89-95.
 
【7】GUO Z K,LI L F,YANG W Y,et al.Microstructures and mechanical properties of high-Mn TRIP steel based on warm deformation of martensite[J].Metallurgical and Materials Transactions A,2015,46(4):1704-1714.
 
【8】AYDIN H,ESSADIQI E,JUNG I H,et al.Development of 3rd generation AHSS with medium Mn content alloying compositions[J].Materials Science and Engineering:A,2013,564:501-508.
 
【9】CAI Z H,DING H,MISRA R D K,et al.Mechanistic contribution of the interplay between microstructure and plastic deformation in hot-rolled Fe-11Mn-2/4Al-0.2C steel[J].Materials Science and Engineering:A,2016,652:205-211.
 
【10】ZHANG M H,CHEN H Y,WANG Y K,et al.Deformation-induced martensitic transformation kinetics and correlative micromechanical behavior of medium-Mn transformation-induced plasticity steel[J].Journal of Materials Science & Technology,2019,35(8):1779-1786.
 
【11】YEN H W,OOI S W,EIZADJOU M,et al.Role of stress-assisted martensite in the design of strong ultrafine-grained duplex steels[J].Acta Materialia,2015,82:100-114.
 
【12】LI J,LI F G,CAI J,et al.Flow behavior modeling of the 7050 aluminum alloy at elevated temperatures considering the compensation of strain[J].Materials & Design,2012,42:369-377.
 
【13】LIN Y C,CHEN M S,ZHANG J.Modeling of flow stress of 42CrMo steel under hot compression[J].Materials Science and Engineering:A,2009,499(1/2):88-92.
 
【14】CHEN L,ZHAO G Q,YU J Q,et al.Constitutive analysis of homogenized 7005 aluminum alloy at evaluated temperature for extrusion process[J].Materials & Design,2015,66:129-136.
 
【15】邱宇,袁飞,曾元松,等.4Cr5MoSiV1热作模具钢的热变形行为与热加工图[J].机械工程材料,2021,45(2):71-77. QIU Y,YUAN F,ZENG Y S,et al.Hot deformation behavior and hot processing maps of 4Cr5MoSiV1 hot working die steel[J].Materials for Mechanical Engineering,2021,45(2):71-77.
 
【16】MOMENI A,DEHGHANI K.Characterization of hot deformation behavior of 410 martensitic stainless steel using constitutive equations and processing maps[J].Materials Science and Engineering:A,2010,527(21/22):5467-5473.
 
【17】潘光永,骆竹梅,林春蕾.铸态GCr15SiMn轴承钢的流变应力本构方程[J].机械工程材料,2019,43(10):66-70. PAN G Y,LUO Z M,LIN C L.Flow stress constitutive equation of as-cast GCr15SiMn bearing steel[J].Materials for Mechanical Engineering,2019,43(10):66-70.
 
【18】YANG Z N,ZHANG F C,ZHENG C L,et al.Study on hot deformation behaviour and processing maps of low carbon bainitic steel[J].Materials & Design,2015,66:258-266.
 
【19】SUN H Y,SUN Y D,ZHANG R Q,et al.Study on hot workability and optimization of process parameters of a modified 310 austenitic stainless steel using processing maps[J].Materials & Design,2015,67:165-172.
 
【20】HE G A,LIU F,SI J Y,et al.Characterization of hot compression behavior of a new HIPed nickel-based P/M superalloy using processing maps[J].Materials & Design,2015,87:256-265.
 
【21】WANG J,ZHAO G Q,LI M J.Establishment of processing map and analysis of microstructure on multi-crystalline tungsten plastic deformation process at elevated temperature[J].Materials & Design,2016,103:268-277.
 
【22】JONAS J J,QUELENNEC X,JIANG L,et al.The Avrami kinetics of dynamic recrystallization[J].Acta Materialia,2009,57(9):2748-2756.
 
相关信息
   标题 相关频次
 20Cr2Ni4A钢的高温热变形行为及热加工图
 4
 4Cr5MoSiV1热作模具钢的热变形行为与热加工图
 4
 新型CHDG-A06奥氏体不锈钢的热变形行为
 4
 2E12铝合金热变形过程中的动态软化机制
 2
 6000系铝合金薄壁结构压缩断裂行为的有限元模拟
 2
 7075铝合金热压缩动态软化行为的本构模型
 2
 Al-1.04Mg-0.85Si-0.01Cu铝合金的热压缩变形行为
 2
 Al-8.8Zn-1.4Mg-0.5Cu-0.1Sc-0.1Er-0.1Zr合金的热变形行为及热加工图
 2
 Al-Mg-Si-Cu合金双道次热变形流变软化行为
 2
 AZ31镁合金的热变形行为及加工图
 2
 AZ31镁合金在热压缩过程中的变形行为
 2
 BH10Mn2G焊接用钢的热变形行为
 2
 DP处理后GH4169合金在热变形过程中的组织演变
 2
 E-玻璃纤维2D编织层铺增强复合材料的损伤力学本构模型及应用
 2
 Fe-3.0% Si-0.09% Nb取向硅钢的高温流变应力
 2
 GH4169高温合金的动态力学行为及其本构关系
 2
 P92钢多轴蠕变本构模型的建立及验证
 2
 TC17钛合金热变形行为及本构模型
 2
 TC8钛合金的动态力学性能及本构关系
 2
 TiAl金属间化合物材料本构模型的研究进展
 2
 不同成分690 MPa级中锰钢中的氢扩散行为及其影响因素
 2
 超声处理对铸造7050铝合金热压缩变形行为的影响
 2
 车用双相高强钢的动态力学性能及本构模型的对比
 2
 钒微合金化钢的强韧性研究
 2
 高速冲击下子午线轮胎胎面胶的本构模型
 2
 高效碲化铋基热电材料中热变形诱导的多尺度微结构效应
 2
 含硼不锈钢的热变形行为
 2
 基于Chaboche模型的金属材料稳态循环应力-应变曲线的本构建模方法
 2
 基于元模型方法的6013铝合金热变形流变行为建模
 2
 氢对热变形TC4钛合金显微组织的影响
 2