搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
双峰结构纳米晶铜的力学行为
          
Mechanical Behavior of Nanocrystalline Copper with Bimodal Structure

摘    要
通过分子动力学模拟、黏塑性本构模型和纳米压痕试验验证相结合的研究方法,系统研究了双峰结构(晶粒尺寸服从统计学中双峰分布)纳米晶铜的变形机理与力学性能。结果表明:在塑性变形过程中位错首先在纳米晶铜的细晶区形核和扩展,且方向互相平行;而粗晶区的位错滑移方向相互交叉,且粗晶尺寸越大,越容易发生位错缠绕和交滑移。双峰结构纳米晶铜的流变应力随着粗晶尺寸的增大而增大,硬度随着粗晶体积分数的增大而减小。由黏塑性本构方程计算得到的应力变化规律与由经验公式和分子动力学模拟得到的结果一致,且本构方程计算得到的流变应力和经验公式所得结果的相对误差小于5%。
标    签 双峰结构   纳米晶铜   变形机理   力学行为   bimodal structure   nanocrystalline copper   deformation mechanism   mechanical behavior  
 
Abstract
The deformation mechanism and mechanical properties of nanocrystalline copper with a bimodal structure (grain size obeying bimodal distribution in statistics) were systematically investigated by combination of molecular dynamics simulation, visco-plastic constitutive model and nanoindentation test verification. The results show that during the plastic deformation, dislocations were first nucleated and expanded in the fine grain zone of the nanocrystalline copper, and the directions were parallel to each other; while the dislocation slip directions in the coarse grain zone crossed each other, and the larger the size of coarse grains, the more likely dislocation entanglement and cross-slip occurred. The flow stresses of the nanocrystalline copper with a bimodal structure increased with increasing coarse grain size, and the hardness decreased with increasing volume fraction of coarse grains. The stress variation law calculated by the visco-plastic constitutive equation was consistent with that by the empirical formula and molecular dynamics simulation, and the relative error between the flow stresses calculated by the constitutive equation and the empirical formula was less than 5%.

中图分类号 TG113.2   DOI 10.11973/jxgccl202211013

 
  中国光学期刊网论文下载说明


所属栏目 物理模拟与数值模拟

基金项目 国家自然科学基金资助项目(51505212);江苏省青年自然科学基金资助项目(BK20201031);南京工程学院引进人才科研启动基金资助项目(YKJ201952)

收稿日期 2022/5/12

修改稿日期 2022/7/26

网络出版日期

作者单位点击查看

联系人作者支有冉

备注张烽(1991-),男,江苏靖江人,讲师,博士

引用该论文: ZHANG Feng,TANG Qiaoyun,CAI Qixing,ZHI Youran,MA Yinzhong. Mechanical Behavior of Nanocrystalline Copper with Bimodal Structure[J]. Materials for mechancial engineering, 2022, 46(11): 78~85
张烽,汤巧云,蔡淇星,支有冉,马银忠. 双峰结构纳米晶铜的力学行为[J]. 机械工程材料, 2022, 46(11): 78~85


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】ARIFUZZAMAN M,HOSSEN M B,HARUN-OR-RASHID M,et al.Structural and magnetic properties of nanocrystalline Ni0.7-xCuxCd0.3Fe2O4 prepared through sol-gel method[J].Materials Characterization,2021,171:110810.
 
【2】LI J J,LU B B,ZHOU H J,et al.Molecular dynamics simulation of mechanical properties of nanocrystalline platinum:Grain-size and temperature effects[J].Physics Letters A,2019,383(16):1922-1928.
 
【3】XIA Q J,REN P W,MENG H M.High performance of amorphous nanocrystalline composite structure materials[J].Journal of Materials Research and Technology,2022,18:4479-4485.
 
【4】KUMAR D D,KUMAR N,KALAISELVAM S,et al.Micro-tribo-mechanical properties of nanocrystalline TiN thin films for small scale device applications[J].Tribology International,2015,88:25-30.
 
【5】LI L,JIAO H Z,LIU C F,et al.Microstructures,mechanical properties and in vitro corrosion behavior of biodegradable Zn alloys microalloyed with Al,Mn,Cu,Ag and Li elements[J].Journal of Materials Science & Technology,2022,103:244-260.
 
【6】ZHOU Y Z,WU P,YANG Y W,et al.The microstructure,mechanical properties and degradation behavior of laser-melted MgSn alloys[J].Journal of Alloys and Compounds,2016,687:109-114.
 
【7】LI J C,WANG K G.Effect of phase coarsening on the mechanical properties of alloys:I.Numerical simulations[J].Engineering Fracture Mechanics,2018,201:229-245.
 
【8】MAGEE A,LADANI L,TOPPING T D,et al.Effects of tensile test parameters on the mechanical properties of a bimodal Al-Mg alloy[J].Acta Materialia,2012,60(16):5838-5849.
 
【9】NEFEDOVA E,ALEKSANDROVA E,GRIGORYEV E,et al.Research high-temperature consolidation of nanostructured bimodal materials[J].Physics Procedia,2015,72:390-393.
 
【10】MI P B,WANG T,YE F X.Influences of the compositions and mechanical properties of HVOF sprayed bimodal WC-Co coating on its high temperature wear performance[J].International Journal of Refractory Metals and Hard Materials,2017,69:158-163.
 
【11】ZHENG Z J,LIU J W,GAO Y.Achieving high strength and high ductility in 304 stainless steel through bi-modal microstructure prepared by post-ECAP annealing[J].Materials Science and Engineering:A,2017,680:426-432.
 
【12】SUN S J,TIAN Y Z,LIN H R,et al.Achieving high ductility in the 1.7 GPa grade CoCrFeMnNi high-entropy alloy at 77 K[J].Materials Science and Engineering:A,2019,740/741:336-341.
 
【13】GUO X,JI R,WENG G J,et al.Micromechanical simulation of fracture behavior of bimodal nanostructured metals[J].Materials Science and Engineering:A,2014,618:479-489.
 
【14】WEI Y J,GAO H J.An elastic-viscoplastic model of deformation in nanocrystalline metals based on coupled mechanisms in grain boundaries and grain interiors[J].Materials Science and Engineering:A,2008,478(1/2):16-25.
 
【15】PLIMPTON S.Fast parallel algorithms for short-range molecular dynamics[J].Journal of Computational Physics,1995,117(1):1-19.
 
【16】MISHIN Y,FARKAS D,MEHL M J,et al.Interatomic potentials for monoatomic metals from experimental data and ab initio calculations[J].Physical Review B,1999,59(5):3393-3407.
 
【17】STUKOWSKI A.Visualization and analysis of atomistic simulation data with OVITO: The open visualization tool[J].Modelling and Simulation in Materials Science and Engineering,2010,18(1):015012.
 
【18】COBLE R L.A model for boundary diffusion controlled creep in polycrystalline materials[J].Journal of Applied Physics,1963,34(6):1679-1682.
 
【19】CONRAD H,NARAYAN J.On the grain size softening in nanocrystalline materials[J].Scripta Materialia,2000,42(11):1025-1030.
 
【20】WEI J N,ZHAO L,HUANG T C,et al.Grain boundary internal friction peak in polycrystalline pure aluminum studied by continuous temperature changing method[J].Materials for Mechanical Engineering,2009,33(10):17-19.
 
【21】HERRING C.Diffusional viscosity of a polycrystalline solid[J].Journal of Applied Physics,1950,21(5):437-445.
 
【22】KNORR P,JUN J,LOJKOWSKI W,et al.Pressure dependence of self- and solute diffusion in bcc zirconium[J].Physical Review B,1998,57(1):334-340.
 
【23】WERNER M,MEHRER H,HOCHHEIMER H D.Effect of hydrostatic pressure,temperature,and doping on self-diffusion in germanium[J].Physical Review B,1985,32(6):3930-3937.
 
【24】JANG J W,KWON J,LEE B J.Effect of stress on self-diffusion in bcc Fe:An atomistic simulation study[J].Scripta Materialia,2010,63(1):39-42.
 
【25】JÉRUSALEM A,RADOVITZKY R.A continuum model of nanocrystalline metals under shock loading[J].Modelling and Simulation in Materials Science and Engineering,2009,17(2):025001.
 
【26】ASARO R J,SURESH S.Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins[J].Acta Materialia,2005,53(12):3369-3382.
 
【27】FAN G J,CHOO H,LIAW P K,et al.A model for the inverse Hall-Petch relation of nanocrystalline materials[J].Materials Science and Engineering:A,2005,409(1/2):243-248.
 
【28】ZHANG T,ZHOU K,CHEN Z Q.Strain rate effect on plastic deformation of nanocrystalline copper investigated by molecular dynamics[J].Materials Science and Engineering:A,2015,648:23-30.
 
相关信息
   标题 相关频次
 变形条件对AZ31镁合金塑性的影响
 2
 单轴拉伸下中锰钢组织演变和力学行为的数值模拟
 2
 典型高熵合金力学行为与相结构预测研究进展
 2
 脉冲射流电铸纳米晶铜的组织与性能
 2
 山区埋地含腐蚀缺陷管道的力学行为
 2
 射流电铸快速成型纳米晶铜的组织与性能
 2
 FEI透射电镜高压故障维修三例
 1
 YD705井套管失效原因分析
 1
 北理工方岱宁院士团队:增材制造随机缺陷对点阵材料力学行为影响
 1
 车轮钢动态断裂韧性研究
 1
 纯钛表面等离子渗镍合金层的显微组织及摩擦学性能
 1
 电感耦合等离子体质谱法测定紫甘薯中痕量元素
 1
 多层梯度超细晶粒钛的变形机制
 1
 多孔Ti-51%Ni合金的压缩回弹性能
 1
 多频管中电流法在油气管道检测应用中的一些建议
 1
 工业CT技术在弹药装药密度差测量中的应用
 1
 工业纯钛室温等径角挤压的塑性变形机制
 1
 国内埋地长输管道应力腐蚀开裂风险现状
 1
 核电厂埋地管防腐蚀层缺陷的定位与尺寸检测
 1
 划时代的金属材料——非晶合金国内外产业及科研发展分析
 1
 基于Murty判据的粗片层状TA15钛合金β相区锻造工艺参数优化
 1
 交联对碳管网络材料大变形力学行为的调控机理研究获进展
 1
 金属/陶瓷复合材料的原位合成及其结构研究
 1
 美国密西根州立大学曹长勇课题组:主动应变下双层膜结构的弯曲行为调控
 1
 某井特殊螺纹套管脱扣和粘扣原因分析
 1
 气井井下的腐蚀监测技术
 1
 汽车变速器齿轮焊缝的相控阵超声检测
 1
 强度提高10倍!揭秘纳米晶铝的变形机理
 1
 热张力减径对电阻焊油井套管沟槽腐蚀性能的影响
 1
 熔体过热处理对FGH4096镍基高温合金纯净化行为及凝固组织的影响
 1