搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
适配体功能化分子印迹聚合物的研究进展
          
Research Progress of Aptamer Functionalized Molecular Imprinted Polymer

摘    要
适配体在靶标的特异性识别和信号转换方面具有独特的技术优势,将适配体与分子印迹技术相结合,获得的适配体功能化分子印迹聚合物表现出优异的选择性识别能力和传感性能。基于此,介绍了适配体功能化分子印迹聚合物的制备方法,并对其在生物传感器以及分离与富集方面的应用进行了综述和展望(引用文献73篇)。
标    签 适配体   分子印迹聚合物   传感器   固相萃取   aptamer   molecular imprinted polymer   sensor   solid phase extraction  
 
Abstract
Aptamer exhibits unique technical advantage in the aspects of specific recognition on target and signal transduction. Combing aptamer and molecular imprinted technology, the obtained aptamer functionalized molecular imprinted polymer exhibits excellent capability of selective recognition and sensing performance. Based on this, the preparation methods of aptamer functionalized molecularly imprinted polymer were introduced, and their applications in biosensor, separation and enrichment were reviewed and prospected (73 ref. cited).

中图分类号 O65   DOI 10.11973/lhjy-hx202301021

 
  中国光学期刊网论文下载说明


所属栏目 综述

基金项目 国家自然科学基金项目(No.32072312)

收稿日期 2021/8/19

修改稿日期

网络出版日期

作者单位点击查看


备注褚希,硕士研究生,主要从事核酸适配体与分子印迹生物传感器在食品快速检测中的研究工作

引用该论文: CHU Xi,YE Tai,YUAN Min,CAO Hui,HAO Liling,WU Xiuxiu,YIN Fengqin,YU Jinsong,XU Fei. Research Progress of Aptamer Functionalized Molecular Imprinted Polymer[J]. Physical Testing and Chemical Analysis part B:Chemical Analysis, 2023, 59(1): 117~124
褚希,叶泰,袁敏,曹慧,郝丽玲,吴秀秀,阴凤琴,于劲松,徐斐. 适配体功能化分子印迹聚合物的研究进展[J]. 理化检验-化学分册, 2023, 59(1): 117~124


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】ZHANG N, ZHANG N, XU Y R, et al. Molecularly imprinted materials for selective biological recognition[J]. Macromolecular Rapid Communications, 2019,40(17):1900096.
 
【2】ZHANG H Q. Molecularly imprinted nanoparticles for biomedical applications[J]. Advanced Materials, 2020,32(3):1806328.
 
【3】YANG K G, LI S W, LIU L K, et al. Epitope imprinting technology:Progress, applications, and perspectives toward artificial antibodies[J]. Advanced Materials, 2019,31(50):1902048.
 
【4】AHMAD O S, BEDWELL T S, ESEN C, et al. Molecularly imprinted polymers in electrochemical and optical sensors[J]. Trends in Biotechnology, 2019,37(3):294-309.
 
【5】YE T, YIN W X, ZHU N X, et al. Colorimetric detection of pyrethroid metabolite by using surface molecularly imprinted polymer[J]. Sensors and Actuators B:Chemical, 2018,254:417-423.
 
【6】YE T, LIU A, BAI L, et al. Core-satellite surface imprinting polymer-based pipette tip solid-phase extraction for the colorimetric determination of pyrethroid metabolite[J]. Mikrochimica Acta, 2020,187(7):412.
 
【7】CAO H, YANG P, YE T, et al. Recognizing adsorption of Cd(Ⅱ) by a novel core-shell mesoporous ion-imprinted polymer:Characterization, binding mechanism and practical application[J]. Chemosphere, 2021,278:130369.
 
【8】YIN F Q, XU F, ZHANG K, et al. Synthesis and evaluation of mesoporous silica/mesoporous molecularly imprinted nanoparticles as adsorbents for detection and selective removal of imidacloprid in food samples[J]. Food Chemistry, 2021,364:130216.
 
【9】ZHOU Z P, LI T, XU W Z, et al. Synthesis and characterization of fluorescence molecularly imprinted polymers as sensor for highly sensitive detection of dibutyl phthalate from tap water samples[J]. Sensors and Actuators B:Chemical, 2017,240:1114-1122.
 
【10】XU S F, LU H Z, LI J H, et al. Dummy molecularly imprinted polymers-capped CdTe quantum dots for the fluorescent sensing of 2,4,6-trinitrotoluene[J]. ACS Applied Materials & Interfaces, 2013,5(16):8146-8154.
 
【11】PILOTO A M L, RIBEIRO D S M, RODRIGUES S S M, et al. Label-free quantum dot conjugates for human protein IL-2 based on molecularly imprinted polymers[J]. Sensors and Actuators B:Chemical, 2020,304:127343.
 
【12】MIYATA T, JIGE M, NAKAMINAMI T, et al. Tumor marker-responsive behavior of gels prepared by biomolecular imprinting[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(5):1190-1193.
 
【13】BATTISTA E, SCOGNAMIGLIO P L, LUISE N D, et al. Turn-on fluorescence detection of protein by molecularly imprinted hydrogels based on supramolecular assembly of peptide multi-functional blocks[J]. Journal of Materials Chemistry. B, 2018,6(8):1207-1215.
 
【14】TAN F, ZHAI M Y, MENG X J, et al. Hybrid peptide-molecularly imprinted polymer interface for electrochemical detection of vancomycin in complex matrices[J]. Biosensors and Bioelectronics, 2021,184:113220.
 
【15】LYU C, KHAN I M, WANG Z P. Capture-SELEX for aptamer selection:A short review[J]. Talanta, 2021,229:122274.
 
【16】ALI G K, OMER K M. Molecular imprinted polymer combined with aptamer (MIP-aptamer) as a hybrid dual recognition element for bio(chemical) sensing applications. Review[J]. Talanta, 2022,236:122878.
 
【17】ZHAN S S, WU Y G, WANG L M, et al. A mini-review on functional nucleic acids-based heavy metal ion detection[J]. Biosensors and Bioelectronics, 2016,86:353-368.
 
【18】WANG L Y, PENG X L, FU H J, et al. Recent advances in the development of electrochemical aptasensors for detection of heavy metals in food[J]. Biosensors and Bioelectronics, 2020,147:111777.
 
【19】HUANG Z K, QIU L P, ZHANG T, et al. Integrating DNA nanotechnology with aptamers for biological and biomedical applications[J]. Matter, 2021,4(2):461-489.
 
【20】YU H X, ALKHAMIS O, CANOURA J, et al. Advances and challenges in small-molecule DNA aptamer isolation, characterization, and sensor development[J]. Angewandte Chemie International Edition, 2021,60(31):16800-16823.
 
【21】ZHANG Z J, LIU J W. Molecular imprinting with functional DNA[J]. Small, 2019,15(26):1805246.
 
【22】XU J J, MIAO H H, WANG J X, et al. Molecularly imprinted synthetic antibodies:From chemical design to biomedical applications[J]. Small, 2020,16(27):1906644.
 
【23】SHARMA P S, PIETRZYK-LE A, D'SOUZA F, et al. Electrochemically synthesized polymers in molecular imprinting for chemical sensing[J]. Analytical and Bioanalytical Chemistry, 2012,402(10):3177-3204.
 
【24】BAI W, GARIANO N A, SPIVAK D A. Macromolecular amplification of binding response in superaptamer hydrogels[J]. Journal of the American Chemical Society, 2013,135(18):6977-6984.
 
【25】BAI W, SPIVAK D A. A double-imprinted diffraction-grating sensor based on a virus-responsive super-aptamer hydrogel derived from an impure extract[J]. Angewandte Chemie International Edition, 2014,53(8):2095-2098.
 
【26】POMA A, BRAHMBHATT H, PENDERGRAFF H M, et al. Generation of novel hybrid aptamer-molecularly imprinted polymeric nanoparticles[J]. Advanced Materials, 2015,27(4):750-758.
 
【27】ZHANG Z J, LIU J W. Molecularly imprinted polymers with DNA aptamer fragments as macromonomers[J]. ACS Applied Materials & Interfaces, 2016,8(10):6371-6378.
 
【28】LI Y Q, ZHANG Z J, LIU B W, et al. Incorporation of boronic acid into aptamer-based molecularly imprinted hydrogels for highly specific recognition of adenosine[J]. ACS Applied Bio Materials, 2020,3(5):2568-2576.
 
【29】LIN M H, ZHANG J, WAN H, et al. Rationally designed multivalent aptamers targeting cell surface for biomedical applications[J]. ACS Applied Materials & Interfaces, 2021,13(8):9369-9389.
 
【30】CRAPNELL R D, HUDSON A, FOSTER C W, et al. Recent advances in electrosynthesized molecularly imprinted polymer sensing platforms for bioanalyte detection[J]. Sensors, 2019,19(5):1204.
 
【31】JOLLY P, TAMBOLI V, HARNIMAN R L, et al. Aptamer-MIP hybrid receptor for highly sensitive electrochemical detection of prostate specific antigen[J]. Biosensors and Bioelectronics, 2016,75:188-195.
 
【32】JOLLY P, FORMISANO N, ESTRELA P. DNA aptamer-based detection of prostate cancer[J]. Chemical Papers, 2015,69(1):77-89.
 
【33】JOLLY P, FORMISANO N, TKÁ J, et al. Label-free impedimetric aptasensor with antifouling surface chemistry:A prostate specific antigen case study[J]. Sensors and Actuators B:Chemical, 2015,209:306-312.
 
【34】ROUSHANI M, RAHMATI Z, HOSEINI S J, et al. Impedimetric ultrasensitive detection of chloramphenicol based on aptamer MIP using a glassy carbon electrode modified by 3-ampy-RGO and silver nanoparticle[J]. Colloids and Surfaces B:Biointerfaces, 2019,183:110451.
 
【35】ROUSHANI M, NEZHADALI A, JALILIAN Z. An electrochemical chlorpyrifos aptasensor based on the use of a glassy carbon electrode modified with an electropolymerized aptamer-imprinted polymer and gold nanorods[J]. Mikrochimica Acta, 2018,185:551.
 
【36】MOKHTARI Z, KHAJEHSHARIFI H, HASHEMNIA S, et al. Evaluation of molecular imprinted polymerized methylene blue/aptamer as a novel hybrid receptor for Cardiac Troponin I (cTnI) detection at glassy carbon electrodes modified with new biosynthesized ZnONPs[J]. Sensors and Actuators B:Chemical, 2020,320:128316.
 
【37】JAFARI S, DEHGHANI M, NASIRIZADEH N, et al. An azithromycin electrochemical sensor based on an aniline MIP film electropolymerized on a gold nano urchins/graphene oxide modified glassy carbon electrode[J]. Journal of Electroanalytical Chemistry, 2018,829:27-34.
 
【38】ALIZADEH T, ZARE M, GANJALI M R, et al. A new molecularly imprinted polymer (MIP)-based electrochemical sensor for monitoring 2,4,6-trinitrotoluene (TNT) in natural waters and soil samples[J]. Biosensors and Bioelectronics, 2010,25(5):1166-1172.
 
【39】LIU Y R, ZHU L L, HU Y, et al. A novel electrochemical sensor based on a molecularly imprinted polymer for the determination of epigallocatechin gallate[J]. Food Chemistry, 2017,221:1128-1134.
 
【40】WU Y, MIDINOV B, WHITE R J. Electrochemical aptamer-based sensor for real-time monitoring of insulin[J]. ACS Sensors, 2019,4(2):498-503.
 
【41】LOTFI Z Z H R, RODRÍGUEZ TORRES Y M, LAI R Y. A reagentless and reusable electrochemical aptamer-based sensor for rapid detection of Cd(Ⅱ)[J]. Journal of Electroanalytical Chemistry, 2017,803:89-94.
 
【42】VILLALONGA A, PÉREZ-CALABUIG A M, VILLALONGA R. Electrochemical biosensors based on nucleic acid aptamers[J]. Analytical and Bioanalytical Chemistry, 2020,412(1):55-72.
 
【43】SABATÉ DEL RÍO J, HENRY O Y F, JOLLY P, et al. An antifouling coating that enables affinity-based electrochemical biosensing in complex biological fluids[J]. Nature Nanotechnology, 2019,14(12):1143-1149.
 
【44】RAD A O, AZADBAKHT A. An aptamer embedded in a molecularly imprinted polymer for impedimetric determination of tetracycline[J]. Mikrochimica Acta, 2019,186(2):56.
 
【45】SHAHDOST-FARD F, ROUSHANI M. Impedimetric detection of trinitrotoluene by using a glassy carbon electrode modified with a gold nanoparticle@fullerene composite and an aptamer-imprinted polydopamine[J]. Microchimica Acta, 2017,184(10):3997-4006.
 
【46】张连明,张东友,曾英,等.DNA辅助识别的西马特罗分子印迹传感器[J].分析化学, 2018,46(11):1770-1777.
 
【47】ZHANG L M, LUO K, LI D, et al. Chiral molecular imprinted sensor for highly selective determination of D-carnitine in enantiomers via dsDNA-assisted conformation immobilization[J]. Analytica Chimica Acta, 2020,1136:82-90.
 
【48】YU C H, LI L, DING Y P, et al. A sensitive molecularly imprinted electrochemical aptasensor for highly specific determination of melamine[J]. Food Chemistry, 2021,363:130202.
 
【49】MAHMOUD A M, ALKAHTANI S A, ALYAMI B A, et al. Dual-recognition molecularly imprinted aptasensor based on gold nanoparticles decorated carboxylated carbon nanotubes for highly selective and sensitive determination of histamine in different matrices[J]. Analytica Chimica Acta, 2020,1133:58-65.
 
【50】YARAHMADI S, AZADBAKHT A, DERIKVAND R M. Hybrid synthetic receptor composed of molecularly imprinted polydopamine and aptamers for impedimetric biosensing of urea[J]. Microchimica Acta, 2019,186(2):1-10.
 
【51】GHANBARI K, ROUSHANI M. A nanohybrid probe based on double recognition of an aptamer MIP grafted onto a MWCNTs-Chit nanocomposite for sensing hepatitis C virus core antigen[J]. Sensors and Actuators B:Chemical, 2018,258:1066-1071.
 
【52】LI S H, LIU C H, YIN G H, et al. Aptamer-molecularly imprinted sensor base on electrogenerated chemiluminescence energy transfer for detection of lincomycin[J]. Biosensors and Bioelectronics, 2017,91:687-691.
 
【53】LIN Z T, GU J H, LI C H, et al. A nanoparticle-decorated biomolecule-responsive polymer enables robust signaling cascade for biosensing[J]. Advanced Materials, 2017,29(31):1702090.
 
【54】LIN Z T, LI Y X, GU J H, et al. A conductive nanowire-mesh biosensor for ultrasensitive detection of serum C-reactive protein in melanoma[J]. Advanced Functional Materials, 2018,28(31):1802482.
 
【55】MA Y X, XU S Y, WANG S G, et al. Luminescent molecularly-imprinted polymer nanocomposites for sensitive detection[J]. TrAC Trends in Analytical Chemistry, 2015,67:209-216.
 
【56】YANG Q, LI J H, WANG X Y, et al. Strategies of molecular imprinting-based fluorescence sensors for chemical and biological analysis[J]. Biosensors and Bioelectronics, 2018,112:54-71.
 
【57】TAN J A, GUO M L, TAN L, et al. Highly efficient fluorescent QDs sensor for specific detection of protein through double recognition of hybrid aptamer-molecular imprinted polymers[J]. Sensors and Actuators B:Chemical, 2018,274:627-635.
 
【58】GENG Y Y, GUO M L, TAN J A, et al. A fluorescent molecularly imprinted polymer using aptamer as a functional monomer for sensing of kanamycin[J]. Sensors and Actuators B:Chemical, 2018,268:47-54.
 
【59】ZHANG Z M, SHIKHA S, LIU J L, et al. Upconversion nanoprobes:Recent advances in sensing applications[J]. Analytical Chemistry, 2019,91(1):548-568.
 
【60】LIU X Y, REN J, SU L H, et al. Novel hybrid probe based on double recognition of aptamer-molecularly imprinted polymer grafted on upconversion nanoparticles for enrofloxacin sensing[J]. Biosensors and Bioelectronics, 2017,87:203-208.
 
【61】FARZIN L, SHAMSIPUR M, SHEIBANI S. A review:Aptamer-based analytical strategies using the nanomaterials for environmental and human monitoring of toxic heavy metals[J]. Talanta, 2017,174:619-627.
 
【62】SAIDUR M R, AZIZ A R A, BASIRUN W J. Recent advances in DNA-based electrochemical biosensors for heavy metal ion detection:A review[J]. Biosensors and Bioelectronics, 2017,90:125-139.
 
【63】LI S H, MA X H, PANG C H, et al. Fluorometric aptasensor for cadmium(Ⅱ) by using an aptamer-imprinted polymer as the recognition element[J]. Mikrochimica Acta, 2019,186(12):823.
 
【64】LI W, ZHANG Q, WANG Y J, et al. Controllably prepared aptamer-molecularly imprinted polymer hybrid for high-specificity and high-affinity recognition of target proteins[J]. Analytical Chemistry, 2019,91(7):4831-4837.
 
【65】SULLIVAN M V, CLAY O, MOAZAMI M P, et al. Hybrid aptamer-molecularly imprinted polymer (aptaMIP) nanoparticles from protein recognition-A trypsin model[J]. Macromolecular Bioscience, 2021,21(5):2100002.
 
【66】SULLIVAN M V, ALLABUSH F, BUNKA D, et al. Hybrid aptamer-molecularly imprinted polymer (AptaMIP) nanoparticles selective for the antibiotic moxifloxacin[J]. Polymer Chemistry, 2021,12(30):4394-4405.
 
【67】SHEN M M, WANG Y Y, KAN X W. Dual-recognition colorimetric sensing of thrombin based on surface-imprinted aptamer-Fe3O4[J]. Journal of Materials Chemistry. B, 2021,9(20):4249-4256.
 
【68】SEIDI S, TAJIK M, BAHARFAR M, et al. Micro solid-phase extraction (pipette tip and spin column) and thin film solid-phase microextraction:Miniaturized concepts for chromatographic analysis[J]. TrAC Trends in Analytical Chemistry, 2019,118:810-827.
 
【69】TURIEL E, MARTÍN-ESTEBAN A. Molecularly imprinted polymers-based microextraction techniques[J]. TrAC Trends in Analytical Chemistry, 2019,118:574-586.
 
【70】LYU H X, SUN H R, ZHU Y M, et al. A double-recognized aptamer-molecularly imprinted monolithic column for high-specificity recognition of ochratoxin A[J]. Analytica Chimica Acta, 2020,1103:97-105.
 
【71】WANG Z D, FANG X W, SUN N R, et al. A rational route to hybrid aptamer-molecularly imprinted magnetic nanoprobe for recognition of protein biomarkers in human serum[J]. Analytica Chimica Acta, 2020,1128:1-10.
 
【72】SHOGHI E, MIRAHMADI-ZARE S Z, GHASEMI R, et al. Nanosized aptameric cavities imprinted on the surface of magnetic nanoparticles for high-throughput protein recognition[J]. Mikrochimica Acta, 2018,185(4):241.
 
相关信息
   标题 相关频次
 分子印迹荧光探针在农药检测中的应用进展
 17
 分子印迹技术在新烟碱类杀虫剂残留检测中的应用
 12
 粮食中农药残留检测的主要前处理方法的介绍及应用
 12
 基于微机电加工技术芯片的量热式生物传感器的测热性能研究
 7
 基于功能核酸的纸基微流控芯片测定重金属离子的研究进展
 6
 双酶显色-紫外-可见分光光度法测定牛奶中组胺与腐胺的含量
 6
 分子印迹固相萃取-超高效液相色谱法测定河水中的碱性橙Ⅱ
 4
 固相萃取-液相色谱-串联质谱法测定儿童消费品中14种酚类物质的迁移量
 4
 分子印迹电化学传感器测定赛诺吗嗪残留
 3
 分子印迹电化学发光传感器的制备及其对卡那霉素的测定应用
 3
 分子印迹固相萃取-高效液相色谱法测定食品中苏丹红Ⅰ-Ⅳ
 3
 分子印迹固相萃取-化学发光法测定贝母素甲
 3
 分子印迹聚合物-固相萃取-高效液相色谱法测定地表水中莠去津
 3
 2,4-二硝基苯肼衍生-固相萃取-液相色谱法测定环境固体基质中15种醛酮类羰基化合物的含量
 2
 4,5-二甲基-2-噻唑偶氮重氮氨基偶氮苯固相萃取-分光光度法测定银
 2
 苯乙烯-二乙烯苯-甲基丙烯酸聚合物微球的制备及其固相萃取性能
 2
 测定盐酸西布曲明的电位传感器的研制与应用
 2
 常见食品中双酚A、双酚S的含量测定及成人膳食暴露评估
 2
 超高效液相色谱-串联四极杆飞行时间质谱法测定人体尿液中14种内源性甾体激素含量
 2
 超高效液相色谱-串联质谱法测定保健食品中7种非法添加的化学镇静剂
 2
 超高效液相色谱-串联质谱法测定鸡蛋中农药及其代谢物的含量
 2
 超高效液相色谱-串联质谱法测定奶粉中16种苯并咪唑类药物残留量
 2
 超高效液相色谱-串联质谱法测定蔬菜和食用菌中19种氨基甲酸酯农药残留量
 2
 超高效液相色谱-串联质谱法测定水产品中瑞他莫林的残留量
 2
 超高效液相色谱-串联质谱法测定植物源性食品中丁氟螨酯及其代谢物的残留量
 2
 超高效液相色谱法测定水产品中甲基睾酮残留物
 2
 超声辅助提取-固相萃取-气相色谱-质谱法测定污泥中12种多环芳烃
 2
 传感器提离高度对瞬变电磁法检测信号的影响
 2
 磁性聚苯乙烯-Fe3O4固相萃取-超高效液相色谱-串联质谱法测定水中双酚A
 2
 磁性氯甲基聚苯乙烯微球固相萃取-气相色谱-串联质谱法测定环境水样中7种硝基苯类化合物
 2