搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
雨水环境下碳陶复合材料的载流摩擦磨损性能
          
Current-Carrying Friction and Wear Performance of Carbon CeramicComposites in Rain Water Environment

摘    要
采用销-盘摩擦磨损试验机对制动闸片用碳陶复合材料开展了雨水环境下的载流摩擦磨损试验,研究了不同摩擦条件下碳陶复合材料的摩擦磨损性能。结果表明:在无载流的雨水环境中,随着雨水流量由0增大到1 mL·min-1,碳陶复合材料的表面粗糙度显著下降,摩擦因数和磨损率小幅度降低,磨损机理主要为剥落和轻微的氧化磨损;在无雨水的载流条件下,随着电流强度由0增加到100 A,表面粗糙度和摩擦因数均显著下降,磨损率明显升高,主要磨损机理为剥落、磨粒磨损、黏着磨损和电弧烧蚀;相对于单因素作用,在载流和雨水的共同作用下,表面粗糙度和摩擦因数明显降低,但磨损率随着雨水流量或电流强度增加的规律不明显,磨损机理为剥落、氧化磨损、磨粒磨损和黏着磨损。
标    签 碳陶复合材料   雨水流量   载流磨损   磨损机理   carbon ceramic composite   rainwater flow rate   current-carrying wear   wear mechanism  
 
Abstract
The current-carrying friction and wear tests of carbon ceramic composite for brake disc were carried out by the pin-disk friction and wear testing machine, and the friction and wear properties of carbon ceramic composite under different friction conditions were studied. The results show that in rainwater environment without current-carrying, with rainwater flow rate increasing from 0 to 1 mL·min-1, the surface roughness of carbon ceramic composite decreased significantly, while the friction coefficient and wear rate decreased slightly; the wear mechanism included spalling and slight oxidation wear. Under the current-carrying condition without rainwater, with current intensity increasing from 0 to 100 A, the surface roughness and friction coefficient decreased significantly, and the wear rate increased obviously; the wear mechanism included spalling, abrasive wear, adhesive wear and arc ablation. Compared with those affected by the single factor, the surface roughness and friction coefficient decreased significantly under the combined action of current carrying and rainwater, but the law of the wear rate increasing with the rainwater flow or the current intensity was not obvious; the wear mechanism was spalling, oxidation wear, abrasive wear and adhesive wear.

中图分类号 TH117.1   DOI 10.11973/jxgccl202301014

 
  中国光学期刊网论文下载说明


所属栏目 材料性能及应用

基金项目

收稿日期 2021/9/8

修改稿日期 2022/11/8

网络出版日期

作者单位点击查看

备注任育博(1997-),男,甘肃庆阳人,硕士研究生

引用该论文: REN Yubo,PENG Jinfang,CAO Chao,TANG Pan,SHEN Changhui,FANG Jingting,ZHU Minhao. Current-Carrying Friction and Wear Performance of Carbon CeramicComposites in Rain Water Environment[J]. Materials for mechancial engineering, 2023, 47(1): 93~99
任育博,彭金方,曹超,唐攀,申长慧,方婧婷,朱旻昊. 雨水环境下碳陶复合材料的载流摩擦磨损性能[J]. 机械工程材料, 2023, 47(1): 93~99


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】李希宁, 佟来生.中低速磁浮列车技术研究进展[J].电力机车与城轨车辆, 2011, 34(2):1-4. LI X N, TONG L S.Technology research of medium and low speed maglev train[J].Electric Locomotives & Mass Transit Vehicles, 2011, 34(2):1-4.
 
【2】蒋廉华, 唐亮, 曾春军, 等.中低速磁浮列车制动系统设计与研究[J].电力机车与城轨车辆, 2017, 40(3):18-22. JIANG L H, TANG L, ZENG C J, et al.Design and research on braking system of mid-low speed maglev train[J].Electric Locomotives & Mass Transit Vehicles, 2017, 40(3):18-22.
 
【3】谢子方, 高向东.列车制动技术的研究与展望[J].内燃机车, 2007(2):26-29. XIE Z F, GAO X D.Study and view of train braking technique[J].Diesel Locomotives, 2007(2):26-29.
 
【4】钱坤才, 吴射章, 乔青锋, 等.高寒雨雪气候下高速动车组盘片摩擦副摩擦性能[J].西南交通大学学报, 2017, 52(6):1188-1192. QIAN K C, WU S Z, QIAO Q F, et al.Friction performance of brake disks and blocks for high-speed EMU trains in cold, rainy, and snowy weather[J].Journal of Southwest Jiaotong University, 2017, 52(6):1188-1192.
 
【5】王章忠.列车制动闸瓦磨损与制动材料分析[J].机械制造, 2003, 41(10):41-43. WANG Z Z.Analysis of wear of train brake-shoes and brake materials[J].Machinery, 2003, 41(10):41-43.
 
【6】KRNEL K, STADLER Z, KOSMA AČG T.Carbon/carbon-silicon-carbide dual-matrix composites for brake discs[J].Materials and Manufacturing Processes, 2008, 23(6):587-590.
 
【7】ZHANG Y H, XIAO Z C, YANG J F, et al.Preparation of C/C-SiC brake materials with low cost and high friction performance[J].Materials Science Forum, 2009, 620/621/622:421-424.
 
【8】GOO B C.Development and characterization of C/C-SiC brake disc[J].Materials and Manufacturing Processes, 2016, 31(8):979-988.
 
【9】FAN S W, DENG J L, XU X Y, et al.Effect of braking speed on frictional properties of short fiber C/C-SiC brake materials and grey cast iron[J].Tribology Transactions, 2013, 56(4):630-636.
 
【10】GUO W J, BAI S X, YE Y C, et al.A new strategy for high-value reutilization of recycled carbon fiber:Preparation and friction performance of recycled carbon fiber felt-based C/C-SiC brake pads[J].Ceramics International, 2019, 45(13):16545-16553.
 
【11】LI Z, XIAO P, XIONG X.Preparation and properties of C/C-SiC brake composites fabricated by warm compacted-in situ reaction[J].International Journal of Minerals, Metallurgy, and Materials, 2010, 17(4):500-505.
 
【12】李江鸿, 熊翔, 张红波, 等.不同制动速度下C/C复合材料摩擦面研究[J].复合材料学报, 2007, 24(4):112-117. LI J H, XIONG X, ZHANG H B, et al.Study on the worn surfaces of C/C composites at various braking velocities[J].Acta Materiae Compositae Sinica, 2007, 24(4):112-117.
 
【13】周海军, 董绍明, 何平, 等.碳/碳碳化硅复合材料的摩擦磨损行为与机理[J].无机材料学报, 2013, 28(10):1057-1061. ZHOU H J, DONG S M, HE P, et al.Tribological behaviors and anti-wear mechanisms of carbon/carbon-silicon carbide composites[J].Journal of Inorganic Materials, 2013, 28(10):1057-1061.
 
【14】肖鹏, 熊翔, 任芸芸.制动速度对C/C-SiC复合材料摩擦磨损性能的影响[J].摩擦学学报, 2006, 26(1):12-17. XIAO P, XIONG X, REN Y Y.Effect of braking speed on friction properties of C/C-SiC composites[J].Tribology, 2006, 26(1):12-17.
 
【15】FAN S W, SUN H D, MA X, et al.Microstructure and properties of a new structure-function integrated C/C-SiC brake material[J].Journal of Alloys and Compounds, 2018, 769:239-249.
 
【16】CHEN G Y, LI Z, XIAO P, et al.Tribological properties and thermal-stress analysis of C/C-SiC composites during braking[J].Transactions of Nonferrous Metals Society of China, 2019, 29(1):123-131.
 
【17】李专, 肖鹏, 岳静, 等.C/C-SiC材料不同制动速率下的湿式摩擦磨损性能[J].材料工程, 2013, 41(3):71-76. LI Z, XIAO P, YUE J, et al.Wet friction and wear properties of C/C-SiC composites during different braking speeds[J].Journal of Materials Engineering, 2013, 41(3):71-76.
 
【18】FAN S W, MA X, NING Y F, et al.Tribological performance of B4C modified C/C-SiC brake materials under dry air and wet conditions[J].Ceramics International, 2019, 45(10):12870-12879.
 
【19】徐晓峰, 宋克兴, 杜三明.载流条件下铜基粉末冶金材料的摩擦磨损行为[J].材料保护, 2008, 41(7):66-68. XU X F, SONG K X, DU S M.Friction and wear behavior of copper-base powder metallurgical material sliding against Cu-Cr alloys under in the presence of electric current[J].Materials Protection, 2008, 41(7):66-68.
 
【20】张晓娟, 孙乐民, 李鹏, 等.铜基粉末冶金材料载流摩擦学特性研究[J].热加工工艺, 2007, 36(14):1-3. ZHANG X J, SUN L M, LI P, et al.Research on tribological property of Cu-base Powder metallurgy material under electrical current[J].Hot Working Technology, 2007, 36(14):1-3.
 
【21】韩晓明, 高飞, 宋宝韫, 等.水分对铜基摩擦材料摩擦磨损性能的影响[J].大连交通大学学报, 2010, 31(2):38-40. HAN X M, GAO F, SONG B Y, et al.Effect of water on tribological characteristics of copper based friction materials[J].Journal of Dalian Jiaotong University, 2010, 31(2):38-40.
 
【22】李韶林, 国秀花, 宋克兴, 等.载流摩擦用铜基复合材料的研究现状及展望[J].材料热处理学报, 2021, 42(4):1-16. LI S L, GUO X H, SONG K X, et al.Research progress and prospect of copper matrix materials for current-carrying friction[J].Transactions of Materials and Heat Treatment, 2021, 42(4):1-16.
 
相关信息
   标题 相关频次
 温度对不同运行工况下Zr-4锆合金微动磨损行为的影响
 11
 AZ31B镁合金在不同温度下的微动磨损行为
 4
 30CrNiMo8合金钢的弯曲微动疲劳特性
 2
 316L不锈钢构件弯曲微动的有限元模拟及其疲劳寿命预测
 2
 Mo5Si3-20% Al2O3p复相陶瓷的制备及摩擦磨损性能
 2
 TC2钛合金电镀铜的应用
 2
 表面粗糙度对碳/铜载流摩擦副摩擦磨损性能的影响
 2
 不同工况下软质丁苯橡胶轮表面磨损颗粒的产生量及磨损机理
 2
 不同铁含量镍-铁合金镀层的摩擦磨损性能
 2
 反应烧结碳化硅陶瓷材料的摩擦磨损性能
 2
 干摩擦条件下Al2O3基复合材料的摩擦磨损特性
 2
 高转速、不同法向载荷条件下车轮与钢轨间的滚动摩擦磨损及损伤行为
 2
 固体润滑剂对碳纤维增强尼龙复合材料摩擦学性能的影响
 2
 聚合物基阻尼复合材料的研究现状
 2
 两种铣刀在切削碳纤维增强塑料时的磨损机理
 2
 摩擦条件对磁轨制动器极靴材料与钢轨材料间摩擦因数的影响
 2
 水/油润滑条件下PTFE复合材料的摩擦学性能
 2
 碳陶复合材料的摩擦磨损性能
 2
 新型马氏体耐磨钢的冲击磨料磨损性能
 2
 玄武岩纤维增强酚醛树脂基摩擦材料的摩擦磨损性能
 2
 烟炱和灰尘颗粒对紫铜电接触微动磨损性能的影响
 2
 氧化铝颗粒增强铜基复合材料的摩擦磨损性能
 2
 氧化锌晶须填充尼龙1010复合材料的摩擦磨损性能
 2
 液相烧结碳化硅陶瓷的摩擦磨损行为
 2
 20%C/Cu复合材料的载流摩擦磨损性能
 1
 38CrSi自配副的摩擦磨损性能
 1
 4种成分车轮钢与U71Mn钢轨钢间的磨损行为
 1
 MoSi2添加量对放电等离子烧结α-Sialon陶瓷性能的影响
 1
 SiC和WS2颗粒协同改性铜/聚酰亚胺树脂基复合材料的摩擦磨损性能
 1
 TiB2-B4C陶瓷刀具切削Inconel 718合金的切削性能与磨损机制
 1