搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
古代青铜器锈层的结构特征与分类初探
          
Structural Characteristics and Classification of Patina on Ancient Bronzes

摘    要
对近20年的青铜器锈层研究进行统计分析,古代锈层剖面样本依据其成分和结构可分为含氯锈层(Type Ⅰ)、氧化锈层(Type Ⅱ)、水合锈层(Type Ⅲ)和富锡锈层(Type Ⅳ)4种基本类型。在此基础上,将数量多且具有代表性的结构作为标准型,其余作为衍生型。锈层类型的多样性与环境中离子含量和扩散过程有关。环境中氯离子作用于金属基体的过程是影响氯化亚铜层形成的重要因素。环境中其他阴离子和氧气含量直接影响氧化产物及其次生腐蚀产物的生成和转化。在此过程中,离子的扩散过程直接控制腐蚀产物的沉积和分层,形成结构多变的锈蚀层。
标    签 青铜器   锈层结构   分类   腐蚀机理   bronze   patina structure   classification   corrosion mechanism  
 
Abstract
Statistical analysis is carried out on the bronze rust layer research in the past 20 years, and according to their composition and structure,the ancient rust layer profile samples are divided into four basic types: chlorine-containing rust layer (Type Ⅰ), oxide rust layer (Type Ⅱ), hydrated rust layer (Type Ⅲ) and tin-rich rust layer (Type Ⅳ). On this basis, a large number of representative rust layers are used as standard rust layers, and the rest are regarded as derived rust layers. The diversity of rust layer types is related to the ion content and diffusion process in the environment. The process of chloride ions acting on the metal matrix in the environment is an important factor affecting the formation of the cuprous chloride layer. The content of other anions and oxygen in the environment directly affects the generation and transformation of oxidation products and their secondary corrosion products. In this process, the diffusion process of ions directly controls the deposition and stratification of corrosion products, forming a rust layer with variable structure.

中图分类号 TG174   DOI 10.11973/fsyfh-202301008

 
  中国光学期刊网论文下载说明


所属栏目 试验研究

基金项目 北京市自然科学基金(2222063)

收稿日期 2022/3/2

修改稿日期

网络出版日期

作者单位点击查看


引用该论文: YANG Xin,WU Wei,CHEN Kunlong. Structural Characteristics and Classification of Patina on Ancient Bronzes[J]. Corrosion & Protection, 2023, 44(1): 42


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】ODDY A,SCOTT D A. Copper and bronze in art:corrosion,colorants,conservation[J]. Studies in Conservation,2002,47(4):277.
 
【2】ROBBIOLA L,BLENGINO J M,FIAUD C. Morphology and mechanisms of formation of natural patinas on archaeological Cu-Sn alloys[J]. Corrosion Science,1998,40(12):2083-2111.
 
【3】OUDBASHI O,HASANPOUR A,DAVAMI P. Investigation on corrosion stratigraphy and morphology in some Iron Age bronze alloys vessels by OM,XRD and SEM-EDS methods[J]. Applied Physics A,2016,122(4):1-11.
 
【4】刘薇,李玲,卫扬波,等. 湖北叶家山墓地出土青铜器的锈层结构研究[J]. 江汉考古,2019(4):116-126.
 
【5】周浩,祝鸿范,蔡兰坤. 青铜器锈蚀结构组成及形态的比较研究[J]. 文物保护与考古科学,2005,17(3):22-27.
 
【6】梁宏刚. 关于金属文物腐蚀成因及其保护修复技术的理论探索[J]. 江汉考古,2021(6):240-245,267.
 
【7】LIU W,LI M,WU N,et al. A new application of Fiber optics reflection spectroscopy (FORS):identification of "bronze disease" induced corrosion products on ancient bronzes[J]. Journal of Cultural Heritage,2021,49:19-27.
 
【8】INGO G M,DE CARO T,RICCUCCI C,et al. Large scale investigation of chemical composition,structure and corrosion mechanism of bronze archeological artefacts from Mediterranean Basin[J]. Applied Physics A,2006,83(4):513-520.
 
【9】INGO G M,ÇILINGIRO LU A,FARALDI F,et al. The bronze shields found at the Ayanis fortress (Van region,Turkey):manufacturing techniques and corrosion phenomena[J]. Applied Physics A,2010,100(3):793-800.
 
【10】QUARANTA M. On the degradation mechanisms under the influence of pedological factors through the study of archeological bronze patina[D]. Alma Mater Studiorum UniversitÀ Di Bologna,2009.
 
【11】牟笛,崔本信,宋国定,等. 河南南阳夏饷铺墓地鄂国青铜器腐蚀状况分析[J]. 江汉考古,2014(1):102-112,93.
 
【12】SCOTT D A. Periodic corrosion phenomena in bronze antiquities[J]. Studies in Conservation,1985,30(2):49-57.
 
【13】王鑫光,梁法伟,唐静,等. 荥阳小胡村墓地出土部分铜器的科学分析[J]. 文物保护与考古科学,2018,30(1):78-85.
 
【14】MUROS V,SCOTT D A. The occurrence of brochantite on archaeological bronzes:a case study from Lofkënd,Albania[J]. Studies in Conservation,2018,63(2):113-125.
 
【15】穆艺,罗武干,李玲,等. 湖北随州叶家山西周墓地出土青铜器锈层结构的综合分析[J]. 文物保护与考古科学,2020,32(3):8-16.
 
【16】谭德睿,吴来明,唐静娟,等. 古铜镜"水银沁"表面形成机理的研究[J]. 文物保护与考古科学,1997,9(1):1-9.
 
【17】刘薇,陈建立. 古代青铜器表面高锡锈层研究综述[J]. 中国国家博物馆馆刊,2019(5):146-160.
 
【18】YOUNG M L,CASADIO F,SCHNEPP S,et al. Non-invasive characterization of manufacturing techniques andcorrosion of ancient Chinese bronzes and a later replica using synchrotron X-ray diffraction[J]. Applied Physics A,2010,100(3):635-646.
 
【19】KEAR G,BARKER B D,WALSH F C. Electrochemical corrosion of unalloyed copper in chloride media-a critical review[J]. Corrosion Science,2004,46(1):109-135.
 
【20】JMIAI A,EL IBRAHIMI B,TARA A,et al. Chitosan as an eco-friendly inhibitor for copper corrosion in acidic medium:protocol and characterization[J]. Cellulose,2017,24(9):3843-3867.
 
【21】SERGHINI-IDRISSI M,BERNARD M C,HARRIF F Z,et al. Electrochemical and spectroscopic characterizations of patinas formed on an archaeological bronze coin[J]. Electrochimica Acta,2005,50(24):4699-4709.
 
【22】CHAUHAN D S,QURAISHI M A,CARRIōRE C,et al. Electrochemical,ToF-SIMS and computational studies of 4-amino-5-methyl-4H-1,2,4-triazole-3-thiol as a novel corrosion inhibitor for copper in 3.5% NaCl[J]. Journal of Molecular Liquids,2019,289:111113.
 
【23】许淳淳,张玉忠. 模拟闭塞电池法研究青铜病的发展过程[J]. 北京化工大学学报(自然科学版),2000,27(4):75-78.
 
【24】祝鸿范,周浩,蔡兰坤. 青铜病的闭塞孔穴腐蚀特征的研究[J]. 文物保护与考古科学,2002,14(S1):29-50.
 
【25】SHAIK M A,SYED K H,GOLLA B R. Electrochemical behavior of mechanically alloyed hard Cu-Al alloys in marine environment[J]. Corrosion Science,2019,153:249-257.
 
【26】GRAYBURN R,DOWSETT M,HAND M,et al. Tracking the progression of bronze disease-A synchrotron X-ray diffraction study of nantokite hydrolysis[J]. Corrosion Science,2015,91:220-223.
 
【27】DESLOUIS C,TRIBOLLET B,MENGOLI G,et al. Electrochemical behaviour of copper in neutral aerated chloride solution.II.Impedance investigation[J]. Journal of Applied Electrochemistry,1988,18(3):384-393.
 
【28】WANG J L,XU C C,LV G C. Formation processes of CuCl and regenerated Cu crystals on bronze surfaces in neutral and acidic media[J]. Applied Surface Science,2006,252(18):6294-6303.
 
【29】张晓梅,原思训,刘煜,等. 周原遗址及渔国墓地出土青铜器锈蚀研究:中国科协首届学术年会,中国浙江杭州,1999.
 
【30】金普军,秦颍,胡雅丽,等. 九连墩墓地1、2号墓出土青铜器上锈蚀产物分析[J]. 江汉考古,2009(1):112-119,153.
 
【31】XU C C,WANG J L. Investigation of the chemical and electrochemical behaviour of mass transfer at an archaeological bronze/soil interface[J]. Anti-Corrosion Methods and Materials,2003,50(5):326-333.
 
【32】郭菲,梅建军,杨军昌,等. 秦陵出土青铜水禽锈体组织结构的初步分析[J]. 文物保护与考古科学,2013,25(4):37-45.
 
【33】HE L,LIANG J Y,ZHAO X,et al. Corrosion behavior and morphological features of archeological bronze coins from ancient China[J]. Microchemical Journal,2011,99(2):203-212.
 
【34】ALFANTAZI A M,AHMED T M,TROMANS D. Corrosion behavior of copper alloys in chloride media[J]. Materials & Design,2009,30(7):2425-2430.
 
【35】李世彩. 安徽省江淮地区出土青铜器的相关研究[D]. 合肥:中国科学技术大学,2017.
 
【36】TYLECOTE R F. The effect of soil conditions on the long-term corrosion of buried tin-bronzes and copper[J]. Journal of Archaeological Science,1979,6(4):345-368.
 
【37】ROBBIOLA L,HURTEL L. Standard nature of the passive layers of buried archaeological bronze-The example of two roman half-length portraits:METAL 95[C]//International conference on metals conservation. Semur-en-Auxois:[s.n.],1995.
 
【38】孙淑云,马肇曾,金莲姬,等. 土壤中腐殖酸对铜镜表面"黑漆古"形成的影响[J]. 文物,1992(12):79-89.
 
相关信息
   标题 相关频次
 青铜器腐蚀研究现状
 3
 1.4301不锈钢管线的腐蚀及修复
 2
 20CrMnTi钢渗碳淬火硬化层深度的磁矫顽力检测
 2
 30CrMnSiA钢螺钉断裂失效分析
 2
 3A12、5052、6063铝合金在沿海大气环境中的腐蚀行为
 2
 DC03冷轧钢板断后伸长率测试结果的影响因素及其不确定度评定
 2
 H2S分压对SM 80SS套管钢在CO2/H2S共存环境中高温高压腐蚀行为的影响
 2
 HRB600级钢筋最大力总延伸率的测试方法及不确定度评定
 2
 L320原油输送管道静置段的腐蚀机理
 2
 Q235钢在油田污水处理系统中的垢下腐蚀行为
 2
 RTM成型技术在码头钢筋混凝土结构修复中的应用
 2
 SAFT成像技术在棒材超声成像检测中的应用
 2
 SRB对油气管道腐蚀影响的研究进展
 2
 WCp/2024Al基复合材料的腐蚀机理
 2
 X65钢在CO2饱和油田水中的电化学行为和腐蚀机理
 2
 X80钢的CO2腐蚀电化学行为与机理研究
 2
 X80管线钢在延安地区水饱和土壤中的电化学腐蚀行为
 2
 保温原油储罐外壁腐蚀成因及防腐蚀措施
 2
 扁钢布氏硬度试验的测量不确定度评定
 2
 表面质量检查仪在热轧机组生产线中的应用
 2
 渤海油田注水井油套管的腐蚀机理
 2
 长北气田某气井油管腐蚀速率增大原因
 2
 长庆油田含硫化氢区块中J55钢套管的腐蚀机理
 2
 长庆油田某采油厂集输管道内腐蚀原因及腐蚀机理
 2
 常见刀具理化性能的差异分析
 2
 超临界CO2输送环境中O2、SO2和NO2杂质对X52钢腐蚀行为的影响
 2
 出口集合管盲板腐蚀分析及优化结构影响研究
 2
 川西须家河组气藏气井的腐蚀规律
 2
 船用海水过滤器的腐蚀和防护
 2
 磁场和NaCl液膜耦合作用下铜腐蚀产物的演化
 2