搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
Ti-46Al-8Nb合金定向凝固显微组织及选晶器角度对合金片层取向的影响
          
Directional Solidification Microstructure of Ti-46Al-8Nb Alloy and Effectof Crystal Selector Angle on Alloy Lamellar Orientation

摘    要
采用Bridgman炉结合BaZrO3/Al2O3复合模壳对Ti-46Al-8Nb (原子分数/%)合金进行定向凝固,研究了合金的界面侵蚀层形貌、显微组织和物相组成,以及选晶器角度对选晶效果及合金片层取向的影响。结果表明:定向凝固合金底部存在厚10 μm左右的侵蚀层,且随着高度增大,合金的氧含量和侵蚀层厚度增加;合金的凝固组织为由γ(TiAl)和α2(Ti3Al)相组成的全片层结构且无夹杂物存在;在30°~60°区间内,选晶器角度越小,选晶效率越高,但选晶器角度对合金片层取向与生长方向的夹角没有影响。
标    签 TiAl基合金   BaZrO3   定向凝固   选晶器角度   片层取向   TiAl alloy   BaZrO3   directional solidification   crystal selector angle   lamellar orientation  
 
Abstract
Ti-46Al-8Nb (atomic fraction/%) alloy was directionally solidified by using BaZrO3/Al2O3 composite mold shell with Bridgman furnace. The interface erosion layer morphology, microstructure and phase composition of the alloy, and the effect of the crystal selector angle on the crystal selection efficiency and the alloy lamellar orientation were studied. The results show that after directional solidification, a 10 μm thick erosion layer existed at the bottom of the alloy. With increasing height, the oxygen content in the alloy and the thickness of the erosion layer increased. The alloy had a full lamellar structure composed of γ (TiAl) and α2 (Ti3Al) phases, and no inclusions existed. Within 30°-60°, the smaller the crystal selector angle was, the higher the crystal selection efficiency was. The crystal selector angle had little effect on the angle between the alloy lamellar orientation and growth direction.

中图分类号 TG314.4   DOI 10.11973/jxgccl202302002

 
  中国光学期刊网论文下载说明


所属栏目 试验研究

基金项目 国家自然科学基金面上资助项目(52022054,51974181,5210041032);上海高校特聘教授(东方学者)岗位计划项目(TP2019041);国家杰出青年基金资助项目(52025041)

收稿日期 2021/12/7

修改稿日期 2022/11/1

网络出版日期

作者单位点击查看

备注张学贤(1995-),男,江西丰城人,硕士研究生

引用该论文: ZHANG Xuexian,DUAN Baohua,YANG Yuchen,MAO Lu,CHEN Guangyao,HOU Xinmei,LI Chonghe. Directional Solidification Microstructure of Ti-46Al-8Nb Alloy and Effectof Crystal Selector Angle on Alloy Lamellar Orientation[J]. Materials for mechancial engineering, 2023, 47(2): 7~13
张学贤,段保华,杨宇辰,毛露,陈光耀,侯新梅,李重河. Ti-46Al-8Nb合金定向凝固显微组织及选晶器角度对合金片层取向的影响[J]. 机械工程材料, 2023, 47(2): 7~13


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】CLEMENS H, MAYER S. Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys[J].Advanced Engineering Materials, 2013, 15(4):191-215.
 
【2】KIM Y W.Intermetallic alloys based on gamma titanium aluminide[J].JOM, 1989, 41(7):24-30.
 
【3】BEWLAY B P, NAG S, SUZUKI A, et al.TiAl alloys in commercial aircraft engines[J].Materials at High Temperatures, 2016, 33(4/5):549-559.
 
【4】MAYER S, ERDELY P, FISCHER F D, et al.Intermetallic β-solidifying γ-TiAl based alloys:From fundamental research to application[J].Advanced Engineering Materials, 2017, 19(4):1600735.
 
【5】LAPIN J, ŠTAMBORSKA M, KAMYSHNYKOVA K, et al.Room temperature mechanical behaviour of cast in situ TiAl matrix composite reinforced with carbide particles[J].Intermetallics, 2019, 105:113-123.
 
【6】KOOHPAYEH S M, FORT D, ABELL J S. The optical floating zone technique:A review of experimental procedures with special reference to oxides[J]. Progress in Crystal Growth and Characterization of Materials, 2008, 54(3/4):121-137.
 
【7】陈瑞润, 丁宏升, 毕维生, 等.电磁冷坩埚技术及其应用[J].稀有金属材料与工程, 2005(4):510-514. CHEN R R, DING H S, BI W S, et al.Electromagnetic cold crucible technology and its application[J].Rare Metal Materials and Engineering, 2005(4):510-514.
 
【8】ELLIOTT A J, POLLOCK T M.Thermal analysis of the Bridgman and liquid-metal-cooled directional solidification investment casting processes[J].Metallurgical and Materials Transactions A, 2007, 38(4):871-882.
 
【9】SADRNEZHAD S K, RAZ S B. Interaction between refractory crucible materials and the melted NiTi shape-memory alloy[J]. Metallurgical and Materials Transactions B, 2005, 36(3):395-403.
 
【10】GOMES F, BARBOSA J, RIBEIRO C S.Induction melting of γ-TiAl in CaO crucibles[J].Intermetallics, 2008, 16(11/12):1292-1297.
 
【11】LAPIN J, GABALCOVÁ Z, PELACHOVÁ T.Effect of Y2O3 crucible on contamination of directionally solidified intermetallic Ti-46Al-8Nb alloy[J].Intermetallics, 2011, 19(3):396-403.
 
【12】LI C H, GAO Y H, LU X G, et al. Interaction between the ceramic CaZrO3 and the melt of titanium alloys[J].Advances in Science and Technology, 2010, 70:136-140.
 
【13】CHEN G Y, KANG J Y, GAO P Y, et al.Dissolution of BaZrO3 refractory in titanium melt[J].International Journal of Applied Ceramic Technology, 2018, 15(6):1459-1466.
 
【14】罗文忠, 沈军, 闵志先, 等.TiAl合金定向凝固过程中与坩埚材料的界面反应研究[J].稀有金属材料与工程, 2009, 38(8):1441-1445. LUO W Z, SHEN J, MIN Z X, et al.Investigation of interfacial reactions between TiAl alloy and crucible materials during directional solidification process[J].Rare Metal Materials and Engineering, 2009, 38(8):1441-1445.
 
【15】KARTAVYKH A V, TCHERDYNTSEV V V, ZOLLINGER J.TiAl-Nb melt interaction with AlN refractory crucibles[J].Materials Chemistry and Physics, 2009, 116(1):300-304.
 
【16】FARAN E, GOTMAN I, GUTMANAS E Y.Experimental study of the reaction zone at boron nitride ceramic-Ti metal interface[J].Materials Science and Engineering:A, 2000, 288(1):66-74.
 
【17】CHEN G Y, GAO P Y, KANG J Y, et al.Improved stability of BaZrO3 refractory with Y2O3 additive and its interaction with titanium melts[J].Journal of Alloys and Compounds, 2017, 726:403-409.
 
【18】CHEN G Y, LAN B B, XIONG F H, et al.Pilot-scale experimental evaluation of induction melting of Ti-46Al-8Nb alloy in the fused BaZrO3 crucible[J].Vacuum, 2019, 159:293-298.
 
【19】LI K, CHEN G Y, ZHANG H, et al.Microstructure evolution of directionally solidified Ti-46Al-8Nb alloy in the BaZrO3-based mould[J]. Materials Research Express, 2018, 5(11):116529.
 
【20】CHEN G, PENG Y B, ZHENG G, et al.Polysynthetic twinned TiAl single crystals for high-temperature applications[J].Nature Materials, 2016, 15(8):876-881.
 
【21】JUNG I S, JANG H S, OH M H, et al.Microstructure control of TiAl alloys containing β stabilizers by directional solidification[J].Materials Science and Engineering:A, 2002, 329/330/331:13-18.
 
【22】YAMAGUCHI M, JOHNSON D R, LEE H N, et al.Directional solidification of TiAl-base alloys[J].Intermetallics, 2000, 8(5/6):511-517.
 
【23】陈光, 陈奉锐, 祁志祥, 等.聚片孪生TiAl单晶及其应用展望[J].振动.测试与诊断, 2019, 39(5):915-926. CHEN G, CHEN F R, QI Z X, et al. PST TiAl single crystal and its application prospect[J].Journal of Vibration, Measurement & Diagnosis, 2019, 39(5):915-926.
 
【24】DING X F, LIN J P, ZHANG L Q, et al.Microstructural control of TiAl-Nb alloys by directional solidification[J].Acta Materialia, 2012, 60(2):498-506.
 
【25】LIU T, LUO L S, SU Y Q, et al.Lamellar orientation control of Ti-47Al-0.5W-0.5Si by directional solidification using β seeding technique[J].Intermetallics, 2016, 73:1-4.
 
【26】LI K, XIONG F H, CHEN G Y, et al.Directional solidification of Ti-46Al-8Nb alloy in BaZrO3 coated Al2O3 composite mould[J].Intermetallics, 2018, 102:106-113.
 
【27】GOTO K, HANAGIRI S, KOHNO K, et al. Progress and perspective of refractory technology[J]. Nippon Steel Technical Report, 2013, 104:21-25.
 
【28】IMAYEV R M, IMAYEV V M, OEHRING M, et al.Alloy design concepts for refined gamma titanium aluminide based alloys[J]. Intermetallics, 2007, 15(4):451-460.
 
【29】DING X F, LIN J P, ZHANG L Q, et al.Lamellar orientation control in a Ti-46Al-5Nb alloy by directional solidification[J].Scripta Materialia, 2011, 65(1):61-64.
 
【30】BURGERS W G, On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium[J]. Physica, 1934, 1:561-586.
 
相关信息
   标题 相关频次
 磁场作用下镍基高温合金定向凝固的研究进展
 2
 定向凝固Al-38.5%Cu合金中带状组织的形成机理
 2
 定向凝固NiAl-15Cr合金的高温拉伸性能和韧脆转变条件
 2
 定向凝固技术制备多孔铜及其力学性能
 2
 铝-铜二元合金定向凝固的相场模拟
 2
 藕状多孔铜凝固界面前沿溶质场的数值模拟
 2
 新型定向凝固镍基高温合金DZ445中γ'相在高温下的演变规律
 2
 TiAl合金表面等离子渗铬工艺
 1
 TiAl基合金成分对其高温摩擦学性能的影响
 1
 TiAl基合金的拉伸疲劳断裂机理
 1
 TiAl基合金的制备及其摩擦磨损性能
 1
 不同机加工表面状态TiAl合金的室温塑性
 1
 定向凝固提纯对工业硅杂质及电阻率的影响
 1
 放电等离子烧结温度对Ti-45Al-6Nb-0.3W合金显微组织和力学性能的影响
 1
 高能球磨与热压烧结制备TiAl基合金
 1
 基于模糊物元的熵权法在接地网腐蚀预测中的应用
 1
 用BP人工神经网络模型预测Ti-46.5Al-2.5V-1.0Cr-0.3Ni合金的高温变形组织
 1