搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
钝化膜完整性对不锈钢海洋大气腐蚀的影响及其质检方法
          
Effect of Passivation Film Integrity on Marine Atmospheric Corrosion of Stainless Steel and Its Quality Inspection Methods

摘    要
从表面粗糙度、变形及划伤,异质污染和热加工等方面,介绍了典型加工工艺对不锈钢表面钝化膜完整性及其海洋大气环境中腐蚀行为的影响;对比了目前国内外标准中关于不锈钢表面钝化膜完整性质量检测方法尤其是适用于工程现场的质检方法;最后,对不锈钢表面钝化膜的研究方向进行了展望。
标    签 钝化膜   不锈钢   大气腐蚀   检测   passivation film   stainless steel   atmospheric corrosion   detection  
 
Abstract
The effects of typical processing technology on the integrity of passivation film on surface of stainless steel and their corrosion behavior in marine atmosphere environment are introduced from the aspects of surface roughness, deformation and scratches, heterogeneous pollution and thermal processing. The integrity quality inspection methods for stainless steel passivation film in domestic and foreign standards are compared especially the quality inspection methods suitable for engineering site. Finally, the research directions of passivation film on stainless steel surface are prospected.

中图分类号 TG174   DOI 10.11973/fsyfh-202305009

 
  中国光学期刊网论文下载说明


所属栏目 专论

基金项目 国家自然科学基金(U610256,51571051,51901035)

收稿日期 2021/8/3

修改稿日期

网络出版日期

作者单位点击查看


引用该论文: ZHANG Dongjiu,CHENG Congqian,YANG Hua,WANG Honglun,XU Laping,LI Youyou,CAO Tieshan,ZHAO Jie. Effect of Passivation Film Integrity on Marine Atmospheric Corrosion of Stainless Steel and Its Quality Inspection Methods[J]. Corrosion & Protection, 2023, 44(5): 46


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】SHAHRYARI A, KAMAL W, OMANOVIC S. The effect of surface roughness on the efficiency of the cyclic potentiodynamic passivation (CPP) method in the improvement of general and pitting corrosion resistance of 316LVM stainless steel[J]. Materials Letters, 2008, 62(23):3906-3909.
 
【2】王梅丰, 魏红阳, 陈东初, 等. 表面粗糙度对硝酸钝化304不锈钢点蚀行为影响[J]. 腐蚀与防护, 2015, 36(12):1156-1160, 1165.
 
【3】LATIFI A, IMANI M, KHORASANI M T, et al. Electrochemical and chemical methods for improving surface characteristics of 316L stainless steel for biomedical applications[J]. Surface and Coatings Technology, 2013, 221:1-12.
 
【4】HONG T, NAGUMO M. Effect of surface roughness on early stages of pitting corrosion of Type 301 stainless steel[J]. Corrosion Science, 1997, 39(9):1665-1672.
 
【5】汪轩义, 吴荫顺, 张琳, 等. 不锈钢钝化膜表面形貌的表征[J]. 金属功能材料, 1999, 6(5):221-224.
 
【6】黄俊初. 不锈钢压力容器制造中如何进行防护及表面处理[J]. 中国高新技术企业, 2012(12):113-114.
 
【7】徐红, 高雪, 朱建新, 等. 表面质量对不锈钢弹簧耐锈蚀性能的影响[J]. 金属制品, 2020, 46(4):38-41, 62.
 
【8】HOU Y, ZHAO J, CHENG C Q, et al. The metastable pitting corrosion of 2205 duplex stainless steel under bending deformation[J]. Journal of Alloys and Compounds, 2020, 830:154422.
 
【9】LUO H, WANG X Z, DONG C F, et al. Effect of cold deformation on the corrosion behaviour of UNS S31803 duplex stainless steel in simulated concrete pore solution[J]. Corrosion Science, 2017, 124:178-192.
 
【10】侯艳, 程从前, 赵杰, 等. 拉应力对2205双相不锈钢临界点蚀温度和点蚀行为的影响[J]. 材料导报, 2019, 33(6):1022-1026.
 
【11】王军, 靳彤, 马一鸣, 等. 高残余应力下2507双相不锈钢应力腐蚀开裂行为[J]. 压力容器, 2020, 37(3):50-55, 78.
 
【12】吴斌, 孟凡江, 和广庆, 等. 核用传热管表面划伤致应力腐蚀失效问题及研究进展[J]. 腐蚀与防护, 2020, 41(9):1-9, 15.
 
【13】ZHU L K, YAN Y, QIAO L J, et al. Stainless steel pitting and early-stage stress corrosion cracking under ultra-low elastic load[J]. Corrosion Science, 2013, 77:360-368.
 
【14】陈君, 李全安, 张清, 等. AISI316不锈钢腐蚀磨损交互作用的研究[J]. 中国腐蚀与防护学报, 2014, 34(5):433-438.
 
【15】RCCM. Design and Construction Rules for Mechanical Components of PWR Nuclear Islands. Sec.I. Subsec.Z. Annex ZG Fast Fracture Resistance[S]. Paris:AFCEN, 1993.
 
【16】PARKS B W, GRUBB J F, FRITZ J D, et al. The influence of iron contamination on the corrosion resistance of several stainless steels[C]//Corrosion 2000, Houston, TX:NACE International, 2000:00475.
 
【17】KHATAK H S, BHARASI N S, GNANAMOORTHY J B. Iron contamination causes stress corrosion cracking in stainless steels[J]. Materials Performance, 1994, 33:56-57.
 
【18】刘思航. 机械打磨不锈钢表面完整性及耐蚀性研究[D]. 大连:大连交通大学, 2016:35-48.
 
【19】宋冠宇, 赵杰, 程从前, 等. 核电用奥氏体不锈钢表面铁素体污染的影响及对策[J]. 腐蚀与防护, 2011, 32(10):813-816.
 
【20】赵艳, 程从前, 曹志远, 等. 304不锈钢与Sn作用后腐蚀性能评价[J]. 材料工程, 2014, 42(3):41-45.
 
【21】CHENG C Q, CAO T S, SONG G Y, et al. Use of colour change indicators to quantify iron contamination on stainless steel[J]. Corrosion Engineering, Science and Technology, 2015, 50(5):346-354.
 
【22】ZHANG Y B, LUO H Y, ZHONG Q P, et al. Characterization of passive films formed on As-received and sensitized AISI 304 stainless steel[J]. Chinese Journal of Mechanical Engineering, 2019, 32(1):1-12.
 
【23】HOU Y. Effects of sensitization on the metastable pitting corrosion of 304 stainless steel[J]. International Journal of Electrochemical Science, 2018:7095-7110.
 
【24】赵莉萍, 袁雪, 李钊, 等. 热处理对低镍铬锰氮奥氏体不锈钢晶间腐蚀的影响[J]. 金属热处理, 2015, 40(7):37-41.
 
【25】LV J L, LIANG T X, WANG C, et al. Influence of sensitization on passive films in AISI 2205 duplex stainless steel[J]. Journal of Alloys and Compounds, 2016, 658:657-662.
 
【26】RAHIMI E, RAFSANJANI-ABBASI A, DAVOODI A, et al. Characterization of the native passive film on ferrite and austenite phases of sensitized 2205 duplex stainless steel[J]. Journal of the Electrochemical Society, 2019, 166(16):C609-C616.
 
【27】TURNER S, ROBINSON F P A. The effect of the surface oxides produced during welding on the corrosion resistance of stainless steels[J]. Corrosion, 1989, 45(9):710-716.
 
【28】凌礼恭. 焊接氧化与打磨工艺对核电304L高温水氧化的影响[D]. 北京:北京科技大学, 2020:33-38.
 
【29】LING L G, GUO P L, SHANG C G, et al. Effects of oxides produced during welding on oxidation behavior of the 304L welded joint in simulated primary circuit solution of PWR[J]. Corrosion Science, 2020, 167:108515.
 
【30】王振尧, 于国才, 韩薇. 我国自然环境大气腐蚀性调查[J]. 腐蚀与防护, 2003, 24(8):323-326, 344.
 
【31】骆鸿, 李晓刚, 肖葵, 等. 304不锈钢在西沙海洋大气环境中的腐蚀行为[J]. 北京科技大学学报, 2013, 35(3):332-338.
 
【32】KAIN R M, PHUL B S, PIKUL S J. 1940'til now-long-term marine atmospheric corrosion resistance of stainless steel and other nickel containing alloys[C]//Outdoor Atmospheric Corrosion.West Conshohocken:ASTM International, 2009:343-343-15.
 
【33】陈俊航, 白子恒, 薛伟, 等. 304不锈钢在青岛污染海洋大气环境中的腐蚀寿命预测模型[J]. 材料保护, 2019, 52(12):48-55, 68.
 
【34】曹岩, 霍阳, 吕钢, 等. 不锈钢在红沿河大气环境下初期腐蚀行为[J]. 全面腐蚀控制, 2015, 29(11):64-66, 84.
 
【35】刘亚鹏, 张慧霞, 王洪伦, 等. 2507双相不锈钢南海大气腐蚀行为研究[J]. 西北工业大学学报, 2019, 37(S1):106-113.
 
【36】WALLINDER D, WALLINDER I O, LEYGRAF C. Influence of surface treatment of type 304L stainless steel on atmospheric corrosion resistance in urban and marine environments[J]. Corrosion, 2003, 59(3):220-227.
 
【37】ASAMI K, HASHIMOTO K. Importance of initial surface film in the degradation of stainless steels by atmospheric exposure[J]. Corrosion Science, 2003, 45(10):2263-2283.
 
【38】SCATIGNO G G, RYAN M P, GIULIANI F, et al. The effect of prior cold work on the chloride stress corrosion cracking of 304L austenitic stainless steel under atmospheric conditions[J]. Materials Science and Engineering:A, 2016, 668:20-29.
 
【39】ÖRNEK C, IDRIS S, RECCAGNI P, et al. Atmospheric-induced stress corrosion cracking of grade 2205 duplex stainless steel-effects of 475℃ embrittlement and process orientation[J]. Metals, 2016, 6(7):167.
 
【40】张磊, 程从前, 张志鹏, 等. 液滴干湿循环下不同轧制态2205双相不锈钢的点蚀行为[J]. 材料保护, 2019, 52(9):38-42, 49.
 
【41】樊栋, 邢燕江, 王海英, 等. 高铁车体结构不锈钢焊接接头的腐蚀行为[J]. 材料保护, 2016, 49(6):73-75, 79, 8.
 
【42】CHENG C Q, KLINKENBERG L I, ISE Y, et al. Pitting corrosion of sensitised type 304 stainless steel under wet-dry cycling condition[J]. Corrosion Science, 2017, 118:217-226.
 
【43】MA H C, LIU Z Y, DU C, et al. Stress corrosion cracking of E690 steel as a welded joint in a simulated marine atmosphere containing sulphur dioxide[J]. Corrosion Science, 2015, 100:627-641.
 
【44】高贤申, 曹燕秋, 周立法. 不锈钢设备与系统表面钝化处理的检查和评定——ASME BPE非强制性附录E的介绍和解读[J]. 机电信息, 2014(14):53-59.
 
【45】Standard practice for cleaning, descaling, and passivation of stainless steel parts, equipment, and systems:ASTM A380-2006[S].[S.l.]:[s.n.], ASTM, 2006.
 
【46】工业设备化学清洗中奥氏体不锈钢钝化膜质量的测试方法蓝点法:GB/T 25150-2010[S]. 北京:中国标准出版社, 2011.
 
【47】杨树凯, 程从前, 侯艳, 等. 核电站不锈钢表面钝化膜的显色检测应用及质检策略[J]. 材料保护, 2016, 49(12):91-94, 8.
 
【48】CHENG C Q, YANG S K, ZHAO J. Use of color-change indicators to quantify passive films on the stainless steel valves of nuclear power plants[J]. Nuclear Engineering and Design, 2016, 297:267-275.
 
【49】CHENG C Q, ZHAO J, CAO T S, et al. Facile chromaticity approach for the inspection of passive films on austenitic stainless steel[J]. Corrosion Science, 2013, 70:235-242.
 
【50】YANG Q Y, CHENG C Q, RUAN F P, et al. Highly sensitive image recognition on iron contamination for 316L austenitic stainless steel by regent additives into color-change indicator[J]. Journal of Nondestructive Evaluation, 2020, 39(1):1-10.
 
相关信息
   标题 相关频次
 DZ411定向凝固镍基合金蠕变性能的快速评估方法
 6
 基于Ls-Dyna软件2种材料模型的碳纤维复合材料层合板面内剪切有限元仿真
 6
 基于参数Zc预测25Cr35Ni耐热钢的蠕变行为与持久寿命
 6
 晶粒形态对HR3C耐热不锈钢时效脆性的影响
 6
 耐热钢应变诱导析出模型及其应用研究进展
 6
 铌含量对HR3C钢在高温时效过程中显微组织演变的影响
 6
 天冬聚脲涂层体系的防腐蚀性能
 6
 流动对316L/2205和431/2205不锈钢在3.5% NaCl溶液中电偶腐蚀的影响
 5
 2205双相钢临界点蚀温度测量方法的比较
 4
 TG700A镍基合金在持久过程中的晶界析出相转变及断裂行为
 4
 基于层次分析法的腐蚀影响因素综合评价
 4
 冷凝液pH对消声器用409不锈钢腐蚀行为的影响
 4
 某海上平台316L不锈钢液控管线泄漏原因
 4
 某循环流化床锅炉TP347H钢再热器管的开裂原因
 4
 汽车方向盘骨架断裂原因分析
 4
 液氢槽车不锈钢管道开裂失效分析
 4
 AlCrFeNi多主元高熵合金的高温性能
 3
 Cl-,CO2和微量H2S共存时13Cr不锈钢的腐蚀性能
 3
 采用不同方法预测10Cr9MoW2VNbBN钢蠕变曲线的比较
 3
 低稳恒磁场对锡锌基合金液与铜片界面反应的影响
 3
 电位扫描速率对测试304不锈钢腐蚀行为的影响
 3
 海水泵叶轮316L不锈钢螺钉的腐蚀原因分析
 3
 核电用奥氏体不锈钢表面铁素体污染的影响及对策
 3
 几种耐热钢在超(超)临界水中抗氧化性能的比较
 3
 凝汽器材料的耐磨蚀性能及电化学性能
 3
 强磁场对Sn-4Cu合金凝固过程中Cu6Sn5相的影响
 3
 显色法检测表征304不锈钢的疲劳损伤过程
 3
 真空热处理对冷喷涂304不锈钢涂层组织与性能的影响
 3
 201型不锈钢在酸性食物模拟环境中的腐蚀行为
 2
 20Cr2Ni4钢制打击罩硬度异常分析
 2