搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
基于纳米SnS/多壁碳纳米管复合物的2,4-二氯苯酚电化学传感器的制备及应用
          
Preparation and Application of 2,4-Dichlorophenol Electrochemical Sensor Based on Nano-SnS/Multi-Walled Carbon Nanotubes Composite

摘    要
采用均匀沉淀法制备纳米SnS/多壁碳纳米管(MWCNTs)复合物,利用场发射扫描电子显微镜(SEM)、X射线粉末衍射仪(XRD)和热重分析仪(TGA)对其形貌和组成进行表征。将纳米SnS/MWCNTs复合物10 mg超声分散在1.0 mL 5%(体积分数)全氟化树脂溶液中,分取8.0 μL滴涂于处理好的玻碳电极(GCE)表面,得到修饰电极(纳米SnS/MWCNTs/GCE)。以纳米SnS/MWCNTs/GCE为工作电极,铂丝电极为对电极,饱和甘汞电极为参比电极,采用循环伏安法(CV)、电化学阻抗谱法(EIS)和差分脉冲伏安法(DPV)对纳米SnS/MWCNTs/GCE电化学性能进行考察,研究了2,4-二氯苯酚(2,4-DCP)在纳米SnS/MWCNTs/GCE上的电化学行为。结果表明:在pH 7.0的磷酸盐缓冲溶液中,纳米SnS/MWCNTs/GCE对2,4-DCP有明显的电催化作用和较高的选择性;2,4-DCP的浓度在0.05~3.00 μmol·L-1内与DPV响应的氧化峰电流呈线性关系,检出限(3S/N)为2.3×10-8mol·L-1;按照标准加入法对水样进行回收试验,2,4-DCP回收率为92.0%~101%。
标    签 纳米SnS   多壁碳纳米管(MWCNTs)   2,4-二氯苯酚(2,4-DCP)   电化学传感器   nano-SnS   multi-walled carbon nanotubes (MWCNTs)   2,4-dichlorophenol (2,4-DCP)   electrochemical sensor  
 
Abstract
Nano-SnS/multi-walled carbon nanotubes (MWCNTs) composite was prepared through homogeneous precipitation method, and the morphology and constitution were characterized by field emission scanning electron microscopy (SEM), X-ray powder diffractometer (XRD) and thermal gravimetric analyzer (TGA). Nano-SnS/MWCNTs composite (10 mg) was dispersed in 1.0 mL of 5% (volume fraction) perfluorinated resin solution by ultrasonic, and the modified electrode was obtained by dripping 8.0 μL of aliquot onto the surface of treated glassy carbon electrode (GCE), which was denoted as nano-SnS/MWCNTs/GCE. The electrochemical property of nano-SnS/MWCNTs/GCE was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) using nano-SnS/MWCNTs/GCE as working electrode, platinum wire electrode as counter electrode, and saturated calomel electrode as reference electrode, and the electrochemical behavior of 2,4-dichlorophenol (2,4-DCP) on nano-SnS/MWCNTs/GCE was studied. As shown by the results, nano-SnS/MWCNTs/GCE had obvious electrocatalytic effect and high selectivity for 2,4-DCP in phosphate buffer solution at pH 7.0. Linear relationship between the concentration of 2,4-DCP and the oxidation peak current by DPV response was kept in the range of 0.05-3.00 μmol·L-1, with detection limit (3S/N) of 2.3×10-8mol·L-1. Test for recovery was made on the water sample by standard addition method, giving results in the range of 92.0%-101% for 2,4-DCP.

中图分类号 O657.1   DOI 10.11973/lhjy-hx202307006

 
  中国光学期刊网论文下载说明


所属栏目 工作简报

基金项目 唐山师范学院科学研究基金项目(2020A01)

收稿日期 2021/12/16

修改稿日期

网络出版日期

作者单位点击查看

备注李改花,讲师,博士,研究方向为纳米材料电化学,luoye870815@163.com

引用该论文: LI Gaihua,LIU Shuang,LUO Baojing. Preparation and Application of 2,4-Dichlorophenol Electrochemical Sensor Based on Nano-SnS/Multi-Walled Carbon Nanotubes Composite[J]. Physical Testing and Chemical Analysis part B:Chemical Analysis, 2023, 59(7): 776~782
李改花,刘爽,罗宝晶. 基于纳米SnS/多壁碳纳米管复合物的2,4-二氯苯酚电化学传感器的制备及应用[J]. 理化检验-化学分册, 2023, 59(7): 776~782


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】HUANG S S, QU Y X, LI R N, et al. Biosensor based on horseradish peroxidase modified carbon nanotubes for determination of 2,4-dichlorophenol[J]. Microchimica Acta, 2008,162(1):261-268.
 
【2】FU W Y, WANG K F, LV X S, et al. Palladium nanoparticles assembled on titanium nitride for enhanced electrochemical hydrodechlorination of 2,4-dichlorophenol in water[J]. Chinese Journal of Catalysis, 2018, 39(4): 693-700.
 
【3】陈素清,沈茂,梁华定,等.银基负载的氧化石墨烯磁性纳米复合材料的合成、表征及其对2,4-二氯酚的吸附[J].分析化学, 2020,48(7):912-920.
 
【4】GUO L A, LEE H K. Electro membrane extraction followed by low-density solvent based ultrasound-assisted emulsification microextraction combined with derivatization for determining chlorophenols and analysis by gas chromatography-mass spectrometry[J]. Journal of Chromatography A, 2012,1243:14-22.
 
【5】ZHENG C, ZHAO J, BAO P, et al. Dispersive liquid-liquid microextraction based on solidification of floating organic droplet followed by high-performance liquid chromatography with ultraviolet detection and liquid chromatography-tandem mass spectrometry for the determination of triclosan and 2,4-dichlorophenol in water samples[J]. Journal of Chromatography A, 2011,1218(25):3830-3836.
 
【6】RAMA R M J, MEDINA A R, DÍAZ A M. A simple and straightforward procedure for monitoring phenol compounds in waters by using UV solid phase transduction integrated in a continuous flow system[J]. Microchimica Acta, 2003,141(3):143-148.
 
【7】ADAM V, KIZEK R. Utilization of electrochemical sensors and biosensors in biochemistry and molecular biology[J]. Sensors, 2008,8(10):6125-6131.
 
【8】ZAHIRIFAR F, RAHIMNEJAD M, ABDULKAREEM R A, et al. Determination of diazinon in fruit samples using electrochemical sensor based on carbon nanotubes modified carbon paste electrode[J]. Biocatalysis and Agricultural Biotechnology, 2019,20:101245.
 
【9】HANRAHAN G, PATIL D G, WANG J. Electrochemical sensors for environmental monitoring: Design, development and applications[J]. Journal of Environmental Monitoring, 2004,6(8):657-664.
 
【10】WANG Y, SHEN Z Y, LI Y, et al. Electrochemical properties of the erbium-chitosan-fluorine-modified PbO2 electrode for the degradation of 2,4-dichlorophenol in aqueous solution[J]. Chemosphere, 2010,79(10):987-996.
 
【11】LI Y M, ZHANG Y, LI J F, et al. Enhanced reduction of chlorophenols by nanoscale zerovalent iron supported on organobentonite[J]. Chemosphere, 2013,92(4):368-374.
 
【12】ZHANG J, LEI J P, JU H X, et al. Electrochemical sensor based on chlorohemin modified molecularly imprinted microgel for determination of 2,4-dichlorophenol[J]. Analytica Chimica Acta, 2013,786:16-21.
 
【13】HENDRICKS N R, WARYO T T, AROTIBA O, et al. Microsomal cytochrome P450-3A4 (CYP3A4) nanobiosensor for the determination of 2,4-dichlorophenol—an endocrine disruptor compound[J]. Electrochimica Acta, 2009,54(7):1925-1931.
 
【14】ZHU J S, LI Y N, HU G Z. Large-scale synthesis of SnS/carbon nanotube composites with enhanced reversible lithium-ion storage[J]. Ionics, 2018,24(4):1265-1269.
 
【15】WANG F F, YAO Q S, ZHOU L Y, et al. Theoretical understanding of SnS monolayer as Li ion battery anode material[J]. Journal of Physics and Chemistry of Solids, 2018,121:261-265.
 
【16】LI Y, XIE H Q, TU J P. Nanostructured SnS/carbon composite for supercapacitor[J]. Materials Letters, 2009,63(21):1785-1787.
 
【17】BIAN X J, LU X F, XUE Y P, et al. A facile one-pot hydrothermal method to produce SnS2/reduced graphene oxide with flake-on-sheet structures and their application in the removal of dyes from aqueous solution[J]. Journal of Colloid and Interface Science, 2013,406:37-43.
 
【18】YUAN L X, YUAN H P, QIU X P, et al. Improvement of cycle property of sulfur-coated multi-walled carbon nanotubes composite cathode for lithium/sulfur batteries[J]. Journal of Power Sources, 2009,189(2):1141-1146.
 
【19】JIANG Y C, WU Z Y, JIANG L, et al. Freestanding CoSeO3·H2O nanoribbon/carbon nanotube composite paper for 2.4 V high-voltage, flexible, solid-state supercapacitors[J]. Nanoscale, 2018,10(25):12003-12010.
 
【20】黄海平,吕连连,陈重镇,等.基于多壁碳纳米管-氧化钨纳米复合材料的多巴胺电化学传感器[J].分析化学, 2018,46(5):765-772.
 
【21】PENG H J, XU W T, ZHU L, et al. 3D carbonaceous current collectors: The origin of enhanced cycling stability for high-sulfur-loading lithium-sulfur batteries[J]. Advanced Functional Materials, 2016,26(35):6351-6358.
 
【22】DONG S Y, SUO G C, LI N, et al. A simple strategy to fabricate high sensitive 2,4-dichlorophenol electrochemical sensor based on metal organic framework Cu3(BTC)2[J]. Sensors and Actuators B: Chemical, 2016,222:972-979.
 
【23】ZHOU W W, ZHU J X, CHENG C W, et al. A general strategy toward graphene@metal oxide core-shell nanostructures for high-performance lithium storage[J]. Energy & Environmental Science, 2011,4(12):4954-4961.
 
【24】HE C N, WU S, ZHAO N Q, et al. Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material[J]. ACS Nano, 2013,7(5):4459-4469.
 
相关信息
   标题 相关频次
 500 kV输电线路铁塔塔脚腐蚀原因及处理方案
 2
 DNA-Fe配合物生物聚合离子膜修饰玻碳电极的制备及其用作过氧化氢电化学传感器的研究
 2
 胺菊酯分子印迹电化学传感器的制备及性能
 2
 分子印迹电化学传感器研究进展
 2
 辅酶Q在CPT自组装修饰电极上的电化学行为及其分析应用
 2
 锅炉水冷壁管内壁腐蚀泄漏原因分析及处理
 2
 核电厂不锈钢设备电化学钝化技术
 2
 核电厂反冲洗海水管道内壁防腐蚀处理技术的应用
 2
 基于Teflon AF/陶瓷复合膜和电化学传感器的变压器油中溶解气体的在线监测系统
 2
 基于多相流原理的旋风法管道防腐技术应用
 2
 基于模糊控制的阴极保护恒电位算法
 2
 纳米材料制备的电化学传感器在水合肼检测中的应用研究进展
 2
 氢化物发生-原子吸收光谱法测定黄芪中硒
 2
 识别酪氨酸对映体的分子印迹电化学传感器
 2
 识别牛血红蛋白的分子印迹电化学传感器的制备与研究
 2
 输电线路铁塔腐蚀等级评定规则
 2
 小口径管道旋风法腐蚀治理技术
 2
 20CrMnTi钢钛、氮含量的计算机优化设计及其应用
 1
 AZ91D镁合金激光熔凝层的缺陷
 1
 DN2-6井套管压力升高及油管接头粘扣原因分析
 1
 打磨对金属磁记忆检测的影响
 1
 低压水射流辅助激光刻蚀加工多晶硅工艺参数的优化
 1
 风机叶片缺陷的无损检测方法比较与评价
 1
 汽车防震器外筒开裂原因
 1
 自制缓蚀剂对井下管材CO2/H2S腐蚀的缓蚀行为
 1