搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
苏州地区管道受地铁杂散电流干扰的规律
          
Metro Stray Current Interference Regularity of Buried Pipeline in Suzhou Area

摘    要
对苏州地区三条受地铁干扰管道进行了24 h连续电位监检测并埋设了腐蚀检查片。利用傅里叶变换对电位监检测数据进行了频域分析,并统计出地铁干扰下管道电位干扰频率动态特性。基于腐蚀检查片实测腐蚀速率和管道电位干扰频率动态特性分析讨论了管道腐蚀速率定量评估办法。对比分析了地铁运行高峰时段(7∶00—9∶00)与24 h管道阴极保护参数的差异。结果表明:高峰时段管道断电电位平均值与24 h断电电位平均值差异较小,差值小于60 mV,且与管道位置区域无关;管道电位具有明显频率分布特征,主要干扰波动周期为0~250 s,其中,电位波动周期为0~150 s的占比超过80%;利用试片24 h电量数据与高峰时段电量数据计算得到理论腐蚀速率、有效腐蚀率等结果偏差较小,苏州地区管道有效腐蚀率为1%~30%。
标    签 管道   地铁杂散电流   傅里叶变换   波动特性   腐蚀风险   pipeline   metro stray current   Fourier transform   fluctuation characteristic   corrosion risk  
 
Abstract
Continuous potential monitoring in 24 h was carried out on three pipelines interfered by metro in Suzhou area and corrosion inspection coupons were embedded. Fourier transform was used to analyze the potential monitoring data in frequency domain, and the dynamic characteristics of potential interference frequency under metro interference were calculated. A quantitative evaluation method of pipeline corrosion rate was investigated based on the corrosion rates tested by inspection coupons and potential interference frequency of pipeline. The difference of the cathodic protection parameters of pipeline between the peak hours (7:00-9:00) of metro running and 24 h was compared and analyzed. The results showed that the difference of average value of off-potential between peak hours and 24 h was small, which was less than 60 mV and had nothing to do with the pipeline location area. The pipeline potentials had obvious frequency distribution characteristics. The main interference cycles were 0-250 s, in which fluctuation cycles of 0-150 s accounted for more than 80%. The differences of corrosion rate and effective corrosion rate calculated from between 24 h electric quantity data and peak hour electric quantity data were small. The effective corrosion rate of the pipeline in Suzhou area was 1%-30%.

中图分类号 TG174   DOI 10.11973/fsyfh-202308015

 
  中国光学期刊网论文下载说明


所属栏目 应用技术

基金项目

收稿日期 2021/9/1

修改稿日期

网络出版日期

作者单位点击查看


引用该论文: LI Minfeng,WU Guangchun,CHEN Yuliang,ZHAO Wanli,PU Chunming,ZHANG Mengmeng. Metro Stray Current Interference Regularity of Buried Pipeline in Suzhou Area[J]. Corrosion & Protection, 2023, 44(8): 83


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】魏洲邦, 刘广桥, 曹刚. 地铁杂散电流对埋地管道的影响与防护[J]. 全面腐蚀控制, 2020, 34(3):41-45.
 
【2】孟庆思, 杜艳霞, 董亮, 等. 埋地管道地铁杂散电流干扰的测试技术[J]. 腐蚀与防护, 2016, 37(5):355-359, 380.
 
【3】计雪松, 秦朝葵. 杂散电流对埋地燃气管道的腐蚀及其监测[J]. 上海煤气, 2007(4):12-15, 46.
 
【4】刘瑶, 谭松玲, 邢琳琳, 等. 北京埋地燃气管道地铁杂散电流干扰影响现场检测及规律分析[J]. 腐蚀科学与防护技术, 2019, 31(4):429-435.
 
【5】薛光, 黄明军. 管道工程智能测试桩和阴极保护监测系统[J]. 油气田地面工程, 2011, 30(6):63-65.
 
【6】杨涛, 崔伟, 方卫林, 等. 阴极保护电位智能采集系统应用现状与展望[J]. 油气储运, 2021, 40(2):146-150.
 
【7】HA Y C, BAE J H, KIM D K, et al. Investigation of stray current from DC subway system in Korea[C]//CORROSION 2005. Houston, Texas:NACE Internationla, 2005.
 
【8】陈耀, 严显智, 阮建平, 等. 油气管道地铁杂散电流直接排流技术应用[J]. 石油化工腐蚀与防护, 2017, 34(4):45-47.
 
【9】赵晋云, 滕延平, 刘玲莉, 等. 新大线管道杂散电流干扰的分析与防护[J]. 管道技术与设备, 2007(2):38-40.
 
【10】韩非. 馈电试验在地铁杂散电流干扰排流中的应用[J]. 腐蚀与防护, 2015, 36(11):1101-1103, 1108.
 
【11】高玉珍. 轨交杂散电流对天然气主干网的腐蚀影响及防护探究[J]. 上海煤气, 2016(2):6-11, 31.
 
【12】刘杰, 杜艳霞, 覃慧敏, 等. 地铁杂散电流对埋地管道的干扰规律[J]. 腐蚀与防护, 2019, 40(1):43-47, 70.
 
【13】张玉星, 杜艳霞, 路民旭. 动态直流杂散电流干扰下埋地管道的腐蚀行为[J]. 腐蚀与防护, 2013, 34(9):771-774.
 
【14】XU S Y, LI W, XING F F, et al. Novel predictive model for metallic structure corrosion status in presence of stray current in DC mass transit systems[J]. Journal of Central South University, 2014, 21(3):956-962.
 
【15】戴舒, 徐洪福, 杜艳霞, 等. 供水管道动态杂散电流干扰腐蚀风险研究[J]. 中国给水排水, 2016, 32(11):58-60.
 
【16】ALLAHKARAM S R, ISAKHANI-ZAKARIA M, DERAKHSHANI M, et al. Investigation on corrosion rate and a novel corrosion criterion for gas pipelines affected by dynamic stray current[J]. Journal of Natural Gas Science and Engineering, 2015, 26:453-460.
 
【17】MCCOLLUM B, AHLBORN G H. The influence of frequency of alternating or infrequently reversed current on electrolytic corrosion[J]. Proceedings of the American Institute of Electrical Engineers, 1916, 35(3):371-397.
 
【18】王新华, 刘菊银, 何仁洋, 等. 轨道交通动态杂散电流对埋地管道的干扰腐蚀试验[J]. 腐蚀与防护, 2010, 31(3):193-197.
 
【19】ZAKOWSKI K, SOKÓLSKI W. 24-hour characteristic of interaction on pipelines of stray currents leaking from tram tractions[J]. Corrosion Science, 1999, 41(11):2099-2111.
 
【20】周宇, 秦朝葵, 陈志光. 轨道交通动态杂散电流干扰及傅里叶分析[J]. 煤气与热力, 2013, 33(2):28-32.
 
【21】朱祥剑, 杜艳霞, 覃慧敏, 等. 地铁杂散电流干扰下埋地管道管地电位动态波动规律[J]. 腐蚀与防护, 2019, 40(12):878-885.
 
【22】董亮, 姚知林, 葛彩刚, 等. 地铁杂散电流干扰下管地电位波动特征的傅里叶分析[J]. 表面技术, 2021, 50(2):294-303.
 
【23】肖嵩, 姜子涛, 童清福, 等. 轨道交通杂散电流对武汉燃气管道干扰的波动规律[J]. 腐蚀与防护, 2020, 41(12):37-43.
 
相关信息
   标题 相关频次
 管道地铁杂散电流干扰腐蚀风险评估与防护措施
 9
 地铁杂散电流干扰下试片法测试埋地钢质管道断电电位
 7
 地铁轨电位限制装置对埋地管道杂散电流干扰的影响
 6
 雷击高压输电线路对临近埋地油气管道电磁干扰的案例分析
 6
 埋地管道地铁杂散电流干扰源头控制法
 5
 地铁排流柜运行对临近钢质埋置构筑物的杂散电流干扰
 4
 雷击高压输电线路对临近埋地油气管道电磁影响的评价方法
 4
 埋地油气管道交流干扰现场测试误差分析
 4
 轨道交通杂散电流对武汉燃气管道干扰的波动规律
 3
 16MnR钢板低温冲击过程的声信号特性
 2
 H2S/CO2油气田地面工程的腐蚀监测技术
 2
 L458M钢管道无损检测缺陷产生原因
 2
 pH稳定剂抑制管道潮湿CO2腐蚀的研究进展
 2
 阿拉斯加冻土区管道阴极保护技术
 2
 掺氢天然气输送管道材料适用性的测试方法
 2
 长庆油田某输油管道腐蚀失效分析
 2
 长输油气管道工艺站场的区域性阴极保护
 2
 常减压蒸馏装置的腐蚀风险分析与控制建议
 2
 超级电容储能供电型有轨电车对埋地钢质管道杂散电流干扰的影响
 2
 大口径管道远场涡流缺陷检测仿真建模
 2
 大数据时代油气管道的安全与防护
 2
 地铁车辆段对埋地钢质管道的干扰及轨道对地过渡电阻的测试方法
 2
 地铁杂散电流对埋地管道的干扰规律
 2
 点腐蚀损伤管道剩余强度的评价方法
 2
 电气化铁路对长输管道的交流干扰及防护
 2
 盾构穿越管道腐蚀防护现状及应对策略
 2
 防冻型参比电极在冻土区阴极保护系统上的应用
 2
 非接触式磁致伸缩导波管道无损检测系统的研制
 2
 分离式励磁结构对管道腐蚀缺陷漏磁场的影响
 2
 复烤片烟常规化学成分的傅里叶变换近红外光谱法的模型转移
 2