搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
超高效液相色谱-串联质谱法测定水产养殖用非规范药品及水中扑草净、阿维菌素和伊维菌素的残留量
          
Determination of Residues of Prometryne, Avermectin and Ivermectin in Non-Standard Drugs for Aquaculture and Water by Ultra-High Performance Liquid Chromatography Tandem Mass Spectrometry

摘    要
取水产养殖用非规范药品样品1.00 g,加入1.0 mg·L-1扑草净-d6(内标)溶液10 μL和水20 mL,其中固态样品经均质、超声处理后离心5 min,液态样品经涡旋振荡混匀后离心5 min,均取上清液用水定容至100 mL;养殖水样经0.45 μm滤膜过滤,取滤液200 mL,加入1.0 mg·L-1扑草净-d6溶液10 μL,振荡混匀。将上述样品溶液过NPO HLB固相萃取柱(预先用5 mL甲醇、5 mL水活化),用5 mL水淋洗,用6 mL甲醇洗脱,将洗脱液于40 ℃氮气吹至近干,加入体积比3∶7的甲醇-含0.1%(体积分数,下同)甲酸的2 mmol·L-1乙酸铵溶液混合液1.0 mL复溶,经涡旋、超声振荡、离心、过滤后,采用超高效液相色谱-串联质谱法同时测定其中扑草净、阿维菌素和伊维菌素的残留量。以Waters ACQUITY UPLC C18柱为固定相,以不同体积比的甲醇-含0.1%甲酸的2 mmol·L-1乙酸铵溶液混合液为流动相进行梯度洗脱,质谱分析采用电喷雾离子(ESI)源,正离子(ESI+)扫描及多反应监测模式,内标法定量。结果表明:扑草净标准曲线的线性范围为0.2~15.0 μg·L-1,阿维菌素、伊维菌素标准曲线的线性范围为2.0~150.0 μg·L-1,非规范药品样品中检出限(3S/N)分别为0.2,2.0,2.0 μg·kg-1,水样中检出限(3S/N)分别为1.0,10,10 μg·L-1。按照标准加入法进行回收试验,回收率为84.8%~105%,测定值的相对标准偏差(n=6)小于9.0%。方法用于分析80个实际样品,结果显示,1个非规范药品样品中检出阿维菌素,其残留量为718 mg·kg-1,1个水样中检出扑草净,其残留量为3.2 ng·L-1
标    签 水产养殖   非规范药品     超高效液相色谱-串联质谱法   扑草净   阿维菌素   伊维菌素   aquaculture   non-standard drug   water   ultra-high performance liquid chromatography tandem mass spectrometry   prometryne   avermectin   ivermectin  
 
Abstract
The non-standard drug sample for aquaculture (1.00 g) was taken, and 10 μL of 1.0 mg·L-1 prometryne-d6 (internal standard) solution and 20 mL of water were added. The solid sample was centrifuged for 5 min after homogenization and ultrasonication, while the liquid sample was centrifuged for 5 min after stirring well by vortex oscillation, both in which the supernatant was taken and made its volume up to 100 mL with water. The aquaculture water sample was filtered through a 0.45 μm filter membrane, 200 mL of the filtrate was taken, and 10 μL of 1.0 mg·L-1 of prometryne-d6 solution was added, shaking and mixing well. The above sample solution was passed through NPO HLB solid phase extraction column (activated with 5 mL of methanol and 5 mL of water), washed with 5 mL of water, and eluted with 6 mL of methanol. The eluent was blown to near dryness at 40 ℃ by nitrogen. The residue was redissolved in 1.0 mL of a mixture of methanol and 2 mmol·L-1 ammonium acetate solution containing 0.1% (volume fraction, the same below) formic acid at a volume ratio of 3∶7. After vortex, ultrasonic oscillation, centrifugation and filtration, the residues of prometryne, avermectin and ivermectin were determined by ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS), using Waters ACQUITY UPLC C18 column as stationary phase and mixtures of methanol and 2 mmol·L-1 ammonium acetate solution containing 0.1% formic acid at different volume ratios as mobile phase for gradient elution. Electrospray ion (ESI) source was used for mass spectrometry, with multiple reaction monitoring mode in positive scanning mode. Internal standard method was used for quantitative analysis. As shown by the results, the linear ranges of the standard curve were 0.2-15.0 μg·L-1for prometryne, and 2.0-150.0 μg·L-1 for avermectin and ivermectin, with detection limits (3S/N) of 0.2, 2.0, 2.0 μg·kg-1 respectively in the non-standard drug samples, and 1.0, 10, 10 μg·L-1respectively in water samples. Test for recovery was made by standard addition method, giving results in the range of 84.8%-105%, with RSDs (n=6) of the determined values less than 9.0%. This method was applied to the analysis of 80 actual samples, and it was shown that avermectin was detected with a residue of 718 mg·kg-1 in a non-standard drug sample, and prometryne was detected with a residue of 3.2 ng·L-1 in a water sample.

中图分类号 O657.63   DOI 10.11973/lhjy-hx202309005

 
  中国光学期刊网论文下载说明


所属栏目 工作简报

基金项目

收稿日期 2022/8/19

修改稿日期

网络出版日期

作者单位点击查看


备注陈永平,高级工程师,主要从事农业生态环境监测与农产品质量安全检测工作

引用该论文: CHEN Yongping,BAO Yan,XU Wenlong,CHENG Zhenhua,WANG Hui,HAN Xianqin,SHI Wenbo,WANG Yuanning. Determination of Residues of Prometryne, Avermectin and Ivermectin in Non-Standard Drugs for Aquaculture and Water by Ultra-High Performance Liquid Chromatography Tandem Mass Spectrometry[J]. Physical Testing and Chemical Analysis part B:Chemical Analysis, 2023, 59(9): 1021~1027
陈永平,包艳,许文龙,成振华,王辉,韩现芹,时文博,王愿宁. 超高效液相色谱-串联质谱法测定水产养殖用非规范药品及水中扑草净、阿维菌素和伊维菌素的残留量[J]. 理化检验-化学分册, 2023, 59(9): 1021~1027


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】LIU C M, WANG Y D, ZHANG L, et al. An integrated strategy for rapid on-site screening and determination of prometryn residues in herbs[J]. Analytical and Bioanalytical Chemistry, 2020,412(3):621-633.
 
【2】LIANG D, DING M Y, XIAO C Y, et al. Isolation and identification of Pseudomonas sp. strain DY-1 from agricultural soil and its degradation effect on prometryne[J]. Current Microbiology, 2021,78(5):1871-1881.
 
【3】EL-SABER BATIHA G, ALQAHTANI A, ILESANMI O B, et al. Avermectin derivatives, pharmacokinetics, therapeutic and toxic dosages, mechanism of action, and their biological effects[J]. Pharmaceuticals, 2020,13(8):1-37.
 
【4】DU Y Y, SHAO Z L, XU Q, et al. Azobenzene-avermectin B1a derivatives for optical modulation of insect behaviors[J]. Journal of Agricultural and Food Chemistry, 2021,69(51):15530-15537.
 
【5】ZENG J Y, VUONG T M D, SHI J H, et al. Avermectin stress varied structure and function of gut microbial community in Lymantria dispar asiatica (Lepidoptera: Lymantriidae) larvae[J]. Pesticide Biochemistry and Physiology, 2020,164:196-202.
 
【6】HAND L H, GOUGOULIAS C, BRAMKE I, et al. Evaluation of the rhizosphere contribution to the environmental fate of the herbicide prometryn[J]. Environmental Toxicology and Chemistry, 2020,39(2):450-457.
 
【7】TIAN Y Y, LIU M X, SANG Y X, et al. Degradation of prometryn in Ruditapes philippinarum using ozonation: Influencing factors, degradation mechanism, pathway and toxicity assessment[J]. Chemosphere, 2020,248:126018.
 
【8】SAMY A L P A, BAKTHAVACHALAM V, VUDUTHA M, et al. Eprinomectin, a novel semi-synthetic macrocylic lactone is cytotoxic to PC3 metastatic prostate cancer cells via inducing apoptosis[J]. Toxicology and Applied Pharmacology, 2020,401:115071.
 
【9】SERAFINI S, DE FREITAS SOUZA C, BALDISSERA M D, et al. Fish exposed to eprinomectin show hepatic oxidative stress and impairment in enzymes of the phosphotransfer network[J]. Aquaculture, 2019,508:199-205.
 
【10】ALAK G, YELTEKIN A Ç, TAS I H, et al. Investigation of 8-OHdG, CYP1A, HSP70 and transcriptional analyses of antioxidant defence system in liver tissues of rainbow trout exposed to eprinomectin[J]. Fish & Shellfish Immunology, 2017,65:136-144.
 
【11】DIAO L, TANG N, ZHANG C, et al. Avermectin induced DNA damage to the apoptosis and autophagy in human lung epithelial A549 cells[J]. Ecotoxicology and Environmental Safety, 2021,215:112129.
 
【12】陈吉香,谢体波,冯才伟.阿维菌素、埃比菌素的残留检测[J].食品研究与开发, 2018,39(8):119-124.
 
【13】XIE Z J, KONG D Z, LIU L Q, et al. Development of ic-ELISA and lateral-flow immunochromatographic assay strip for the simultaneous detection of avermectin and ivermectin[J]. Food and Agricultural Immunology, 2017,28(3):439-451.
 
【14】SHI W M, HE J H, JIANG H Y, et al. Determination of multiresidue of avermectins in bovine liver by an indirect competitive ELISA[J]. Journal of Agricultural and Food Chemistry, 2006,54(17):6143-6146.
 
【15】张元,谷岩,贾宏新.固相萃取-高效液相色谱-紫外检测法测定蔬菜中阿维菌素的残留量[J].食品安全质量检测学报, 2020,11(6):1958-1961.
 
【16】刘桂伶,李婷婷.高效液相色谱法检测8种果蔬中阿维菌素残留量的分析方法[J].新疆农业科技, 2020(1):38-39.
 
【17】韩冯阳,高有华,时英爽,等.QuEChERS-高效液相色谱测定棉花植株中阿维菌素、高效氯氟氰菊酯残留的方法研究[J].新疆农业大学学报, 2018,41(4):281-286.
 
【18】R AU'G BIES A, ANTKOWIAK S, GRANADOS M, et al. Determination of avermectins: A QuEChERS approach to the analysis of food samples[J]. Food Chemistry, 2015,181:57-63.
 
【19】LEMOS M A T, MATOS C A, DE RESENDE M F, et al. Development, validation, and application of a method for selected avermectin determination in rural waters using high performance liquid chromatography and fluorescence detection[J]. Ecotoxicology and Environmental Safety, 2016,133:424-432.
 
【20】PIMENTEL-TRAPERO D, SONSECA-YEPES A, MOREIRA-ROMERO S, et al. Determination of macrocyclic lactones in bovine liver using QuEChERS and HPLC with fluorescence detection[J]. Journal of Chromatography B, 2016,1015/1016:166-172.
 
【21】FLOREZ D H , TEIXEIRA R A, SANTOS DA SILVA R C, et al. Pipette-tip solid-phase extraction using polypyrrole as efficient adsorbent for extraction of avermectins and milbemycins in milk[J]. Analytical and Bioanalytical Chemistry, 2018,410(14):3361-3374.
 
【22】HOU Z N, LIANG X R, DU L P, et al. Quantitative determination and validation of avermectin B1a in commercial products using quantitative nuclear magnetic resonance spectroscopy[J]. Magnetic Resonance in Chemistry, 2014,52(9):480-485.
 
【23】MOSCHOU I C, DASENAKI M E, THOMAIDIS N S. Ionization study and simultaneous determination of avermectins and milbemycines in fish tissue by LC-ESI-MS/MS[J]. Journal of Chromatography B, 2019,1104:134-140.
 
【24】黄梅英,王华珍,卢军,等.应用QuEChERS-HPLC/MS/MS法测定鸡蛋中的氯羟吡啶和阿维菌素[J].浙江农业科学, 2020,61(9):1872-1875.
 
【25】方玲,卞红正,赵宏梅.QuEChERS-UPLC-MS/MS法测定水果蔬菜中的阿维菌素[J].安徽农学通报, 2019,25(9):106-108.
 
【26】ZHANG W, HUANG T, LI H M, et al. Determination of avermectins by the internal standard recovery correction-high performance liquid chromatography-quantitative Nuclear Magnetic Resonance method[J]. Talanta, 2017,172:78-85.
 
【27】ZHANG H X, LU W, XIA H, et al. Rapid and sensitive detection of avermectin residues in edible oils by magnetic solid-phase extraction combined with ultra-high-pressure liquid chromatography-tandem mass spectrometry[J]. Food Analytical Methods, 2017,10(9):3201-3208.
 
【28】YOU X X, GAO L, QIN D L, et al. Preparation of magnetic molecularly imprinted polymers by atom transfer radical polymerization for the rapid extraction of avermectin from fish samples[J]. Journal of Separation Science, 2017,40(2):424-430.
 
【29】BEPPU K, SAITO D, MUGURUMA Y, et al. Stable isotope labeling by carbon-13 in bacteria culture for the analysis of residual avermectin using stable isotope dilution liquid chromatography tandem mass spectrometry[J]. Analytical Sciences, 2021,37(10):1385-1390.
 
【30】DA SILVA G R, LIMA J A, DE SOUZA L F, et al. Multiresidue method for identification and quantification of avermectins,benzimidazoles and nitroimidazoles residues in bovine muscle tissue by ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) using a QuEChERS approach[J]. Talanta, 2017,171:307-320.
 
【31】李雪,王凡,郑永欣,等.固相萃取-高效液相色谱法测定环境水样中痕量三嗪类除草剂[J].福建分析测试, 2018,27(3):38-42.
 
【32】SEE H H, MARSIN SANAGI M, IBRAHIM W A W, et al. Determination of triazine herbicides using membrane-protected carbon nanotubes solid phase membrane tip extraction prior to micro-liquid chromatography[J]. Journal of Chromatography A, 2010,1217(11):1767-1772.
 
【33】刘峰,金海涛,马文琼,等.UPLC-MS/MS法检测稻米及土壤中扑草净除草剂的残留量[J].农药科学与管理, 2014,35(4):49-52.
 
【34】鲁刚,宗万里.基于毛细管气相色谱法的花色蛤中扑草净残留量测定[J].成都大学学报(自然科学版), 2015,34(4):336-338.
 
【35】朱晓华,王凯,张燚,等.固相萃取-气相色谱串联质谱法测定水产品中扑草净的残留[J].上海海洋大学学报, 2015,24(6):960-967.
 
相关信息
   标题 相关频次
 在线固相萃取-液相色谱-串联质谱法测定动物源食品中阿维菌素和伊维菌素的残留量
 4
 柱前衍生-高效液相色谱法测定牛筋中阿维菌素和伊维菌素
 4
 超高效液相色谱-串联质谱法测定水中阿莫西林的残留量
 3
 超高效液相色谱-串联质谱法测定水中戊基黄原酸
 3
 固相萃取-超高效液相色谱-串联质谱法测定水中13种抗生素的含量
 3
 聚乙二醇/无机盐双水相萃取-超高效液相色谱-串联质谱法测定环境水体中5种三嗪类除草剂残留量
 3
 衍生-气相色谱-质谱法测定水中痕量雌激素
 3
 Al-Zn-Ga低驱动电位牺牲阳极的设计及其电化学性能
 2
 AZ31B镁合金的数控热渐进成型工艺
 2
 BTi6431S高温钛合金盒形件超塑性成型工艺
 2
 GH99高温合金蜂窝板的制备及力学性能
 2
 QuEChERS-超高效液相色谱-串联质谱法测定糌粑中15种真菌毒素的含量
 2
 SiC质量分数对SiCp/6061铝基复合材料组织和性能的影响
 2
 TC1钛合金的高温流变行为
 2
 氨基磺酸盐低应力镀镍工艺
 2
 闭孔泡沫铝的表面积与耐腐蚀性能
 2
 卟啉吡啶季铵盐分光光度法测定水中痕量铜
 2
 不同工况下轮轨材料间的摩擦磨损行为
 2
 差厚激光拼焊板的成形极限
 2
 场强放大堆积-氢化物发生-原子荧光光谱法测定水中硒
 2
 超高效液相色谱-串联质谱法测定工作场所空气中14种环境激素的含量
 2
 超高效液相色谱-串联质谱法测定鸡蛋中农药及其代谢物的含量
 2
 超高效液相色谱-串联质谱法测定葵花籽中4种交链孢霉毒素的含量
 2
 超高效液相色谱-串联质谱法测定毛发中7种新型苯二氮䓬类策划药物的含量
 2
 超高效液相色谱-串联质谱法同时测定水体中莠去津和呋喃丹的含量
 2
 超声辅助衍生-高效液相色谱法测定水中草铵膦、草甘膦及氨甲基膦酸的含量
 2
 持久性化学改进剂钨-铱用于电热原子吸收光谱法测定水和植物性食品中痕量
 2
 吹扫捕集-气相色谱-三重四极杆质谱法同时测定水中苯系物和有机含氧汽油添加剂
 2
 吹扫捕集-气相色谱-质谱法测定水和土壤中的甲基叔丁基醚含量
 2
 吹扫捕集-气相色谱-质谱法测定水中10种半挥发性有机物
 2