扫一扫 加微信
首页 > 期刊论文 > 论文摘要
基于纳米ZIF-8/ZnO构筑的超疏水涂层及其耐蚀抑菌性能
          
Anticorrosion and Antibacterial Enhancement by Construction of Nano-ZIF-8/ZnOBased Superhydrophobic Coatings on Aluminum Alloy

摘    要
通过电化学沉积法和水热法在AA7075铝合金表面制备了ZIF-8/ZnO层,利用超声沉积1H,1 H,2 H,2 H-全氟癸基三乙氧硅烷(PFDS)改性,构建了超疏水转化膜PFDS/ZIF-8/ZnO。采用场发射扫描电子显微镜、红外光谱、接触角测试、动电位扫描和阻抗谱,分析了超疏水转化膜的微观结构、化学性质、疏水性、耐蚀性和抑菌性能。结果表明:铝合金表面经过微纳米结构构建了超疏水膜层,其接触角达到156°;在3. 5% NaCl盐水浸泡9 d后,膜层试样低频阻抗|Z|0. 01 Hz仍然超过106 Ω ·cm2,表现出较好的耐蚀性和耐久性;抗菌测试结果表明,膜层的抑菌率可达到80. 6%,表现出良好的抗菌能力。
标    签 铝合金   ZnO   ZIF-8   超疏水   耐蚀性   抑菌性能   aluminum alloy   ZnO   ZIF-8   superhydrophobicity   anticorrosion   antibacterial  
 
Abstract
ZIF-8/ZnO layer was prepared on the surface of AA7075 aluminum alloy via electrochemical deposition and hydrothermal process, 1H,1H,2H,2H-perfluorodecyl-triethoxysilane (PFDS) was then applied to form a superhydrophobic conversion membrane (PFDS/ZIF-8/ZnO). The microstructure, chemical properties, hydrophobicity, and corrosion resistance of PFDS/ZIF-8/ZnO were analyzed by scanning electron microscopy (FESEM), Fourier transforms infrared spectroscopy (FTIR), contact angle measurement, and electrochemical impedance spectroscopy (EIS), respectively. The results showed that contact angle of PFDS/ZIF-8/ZnO reached 156°, benefiting from micro/nanostructures and low-surface energy modification. After immersing in 3. 5% NaCl solution for 9 days, |Z|0. 01 Hz (the low-frequency impedance at 0. 01 Hz) still exceeded 106 Ω ·cm2, which showed high corrosion resistance and durability. The antibacterial test results showed that the antibacterial rate of the film layer could reach 80. 6%, demonstrating good antibacterial ability.

中图分类号 TG174   DOI 10.11973/fsyfh-202310004

 
  中国光学期刊网论文下载说明


所属栏目 试验研究

基金项目 国家自然科学基金(51771079;52001127)

收稿日期 2022/3/12

修改稿日期

网络出版日期

作者单位点击查看


引用该论文: LIU Bing,XIAO Song,XU Bing,CAO Xiangkang,DONG Zehua. Anticorrosion and Antibacterial Enhancement by Construction of Nano-ZIF-8/ZnOBased Superhydrophobic Coatings on Aluminum Alloy[J]. Corrosion & Protection, 2023, 44(10): 18


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】HLUSHKO H,CUBIDES Y,HLUSHKO R,et al.Hydrophobic antioxidant polymers for corrosion protection of an aluminum alloy[J].ACS Sustainable Chemistry & Engineering,2018,6(11):14302-14313.
 
【2】BANDEIRA R M,VAN DRUNEN J,GARCIA A C,et al.Influence of the thickness and roughness of polyaniline coatings on corrosion protection of AA7075 aluminum alloy[J].Electrochimica Acta,2017,240:215-224.
 
【3】LYON S B,BINGHAM R,MILLS D J.Advances in corrosion protection by organic coatings:what we know and what we would like to know[J].Progress in Organic Coatings,2017,102:2-7.
 
【4】蔡光义.聚氨酯涂层的老化机制及改性与失效评价方法研究[D].武汉:华中科技大学,2018.
 
【5】王玲,高瑾,李晓刚,等.光辐射对丙烯酸聚氨酯涂层防腐保护性能的影响[J].北京科技大学学报,2008,30(2):152-155.
 
【6】谢慧.防污改性聚硅氧烷涂层材料的制备及性能研究[D].杭州:浙江大学,2021.
 
【7】YANG X F,LI J,CROLL S G,et al.Degradation of low gloss polyurethane aircraft coatings under UV and prohesion alternating exposures[J].Polymer Degradation and Stability,2003,80(1):51-58.
 
【8】XIA X C,CAO X K,CAI G Y,et al.Underwater superoleophobic composite coating characteristic of durable antifouling and anticorrosion properties in marine environment[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,628:127323.
 
【9】万闪,姜丹,蔡光义,等. 铝合金超疏水转化膜的制备与性能材料工程, 2018, 46(9):144-151.
 
【10】曲光辉.铝合金基体上超疏水表面的制备研究[D].大连:大连理工大学,2018.
 
【11】吴春亚,黄俊杰,李曦光,等.金属基超疏水表面的制备技术研究新进展[J].哈尔滨工业大学学报,2021,53(7):1-19.
 
【12】吴润妮.铝基超疏水涂层的制备及其防腐蚀特性的研究[D].兰州:西北师范大学,2017.
 
【13】ZHU L H,ZHANG D Q,GAO L. 智能防腐涂层的研究进展[J].Corrosion Science and Protection Technology,2015,27(2):203-206.
 
【14】JIN Z P,MEI H,PAN L K,et al.Superhydrophobic self-cleaning hierarchical micro-/nanocomposite coating with high corrosion resistance and durability[J].ACS Sustainable Chemistry & Engineering,2021,9(11):4111-4121.
 
【15】曹祥康,孙晓光,蔡光义,等.耐久型超疏水表面:理论模型、制备策略和评价方法[J].化学进展,2021,33(9):1525-1537.
 
【16】陈俊,王振辉,王玮,等.超疏水表面材料的制备与应用[J].中国材料进展,2013,32(7):399-405,441.
 
【17】尹续保,李育桥,高荣杰.铜基超疏水表面的制备及其耐蚀性研究[J].中国腐蚀与防护学报,2022,42(1):93-98.
 
【18】LI Y,CAI W P,DUAN G T,et al.Superhydrophobicity of 2D ZnO ordered pore arrays formed by solution-dipping template method[J].Journal of Colloid and Interface Science,2005,287(2):634-639.
 
【19】PENG C W,CHANG K C,WENG C J,et al.UV-curable nanocasting technique to prepare bio-mimetic super-hydrophobic non-fluorinated polymeric surfaces for advanced anticorrosive coatings[J].Polymer Chemistry,2013,4(4):926-932.
 
【20】JIANG D,ZHOU H,WAN S,et al.Fabrication of superhydrophobic coating on magnesium alloy with improved corrosion resistance by combining micro-arc oxidation and cyclic assembly[J].Surface and Coatings Technology,2018,339:155-166.
 
【21】ZHOU M,PANG X L,WEI L,et al.Insitu grown superhydrophobic Zn-Al layered double hydroxides films on magnesium alloy to improve corrosion properties[J].Applied Surface Science,2015,337:172-177.
 
【22】ESMAEILIRAD A,RUKOSUYEV M V,JUN M B G,et al.A cost-effective method to create physically and thermally stable and storable super-hydrophobic aluminum alloy surfaces[J].Surface and Coatings Technology,2016,285:227-234.
 
【23】GRAY-MUNRO J,CAMPBELL J.Mimicking the hierarchical surface topography and superhydrophobicity of the lotus leaf on magnesium alloy AZ31[J].Materials Letters,2017,189:271-274.
 
【24】LI W,KANG Z X.Fabrication of corrosion resistant superhydrophobic surface with self-cleaning property on magnesium alloy and its mechanical stability[J].Surface and Coatings Technology,2014,253:205-213.
 
【25】LI Z J,YUAN Y,JING X Y.Composite coatings prepared by combined plasma electrolytic oxidation and chemical conversion routes on magnesium-lithium alloy[J].Journal of Alloys and Compounds,2017,706:419-429.
 
【26】VAZIRINASAB E,JAFARI R,MOMEN G. Application of superhydrophobic coatings as a corrosion barrier:a review[J]. Surface and Coatings Technology, 2018, 341:40-56.
 
【27】DAS S,KUMAR S,SAMAL S K,et al.A review on superhydrophobic polymer nanocoatings:recent development and applications[J].Industrial & Engineering Chemistry Research,2018,57(8):2727-2745.
 
【28】PENG S,YANG X J,TIAN D,et al.Chemically stable and mechanically durable superamphiphobic aluminum surface with a micro/nanoscale binary structure[J].ACS Applied Materials & Interfaces,2014,6(17):15188-15197.
 
【29】YAMAUCHI Y,TENJIMBAYASHI M,SAMITSU S,et al.Durable and flexible superhydrophobic materials:abrasion/scratching/slicing/droplet impacting/bending/twisting-tolerant composite with porcupinefis H-like structure[J]. ACS Applied Materials & Interfaces,2019,11(35):32381-32389.
 
【30】MIAO W Z,WANG J,LIU J D,et al.Zeolitic imidazolate framework:self-cleaning and antibacterial zeolitic imidazolate framework coatings (adv.mater.interfaces 14/2018)[J].Advanced Materials Interfaces,2018,5(14):1870068.
 
【31】XIE Q Y,XIE Q N,PAN J S,et al.Biodegradable polymer with hydrolysis-induced zwitterions for antibiofouling[J].ACS Applied Materials & Interfaces,2018,10(13):11213-11220.
 
【32】JIANG D, XIA X,HOU J et al. Enhanced corrosion barrier of microarc-oxidized Mg alloy by self-healing superhydrophobic silica coating[J]. Industrial & Engineering Chemistry Research, 2018, 58(1):165-178.
 
相关信息
   标题 相关频次
 油气田产出液缓蚀剂残余浓度在线监测技术及应用
 4
 AA5052铝合金表面化学镀锡及其耐蚀性
 3
 LF21铝合金稀土转化膜的开裂及其钼酸盐后处理
 3
 阿洛丁1200S处理工艺参数对铝合金耐盐雾腐蚀性能的影响
 3
 高强度耐腐蚀铝合金的研究进展
 3
 铝合金表面自修复防护膜的研究进展
 3
 铝合金海水缓蚀剂研究进展
 3
 铝合金稀土磷化与铬磷化比较
 3
 铈盐封孔对6061铝合金阳极氧化膜耐蚀性的影响
 3
 稀土氯化物对6061铝合金原位磷化有机涂层耐蚀性的影响
 3
 一种飞机结构用铝合金表面镀层的制备及其耐蚀性
 3
 2124铝合金超厚板热轧过程温度场的数值模拟
 2
 2A02铝合金过烧组织特征及金相检验技术的改进
 2
 2A12铝合金当量加速腐蚀试验
 2
 2A12铝合金微弧氧化陶瓷层的电化学腐蚀行为
 2
 2A14铝合金去应力热时效的作用
 2
 2A50铝合金钎焊钎料与钎剂的选择
 2
 3104铝合金织构的X射线衍射法测试误差
 2
 3A12、5052、6063铝合金在沿海大气环境中的腐蚀行为
 2
 5083/6063不等厚铝合金双丝CMT角焊接头的组织与性能
 2
 5252H32铝合金维氏硬度试验的测量不确定度评定
 2
 5A06铝合金超薄板交流冷金属过渡焊接头的组织与拉伸性能
 2
 6 mm厚铝合金板激光搭接焊T型接头焊缝的成形性能
 2
 6000系铝合金薄壁结构压缩断裂行为的有限元模拟
 2
 6061铝合金的动态拉伸性能及其本构模型
 2
 6061铝合金激光填丝焊接接头的组织与力学性能
 2
 6061铝合金汽车保险杠横梁的碰撞性能
 2
 6061铝合金上硅烷膜的制备与性能
 2
 6063铝合金挤压型材尺寸超差分析及模具优化设计
 2
 6063铝合金阳极氧化过程中麻点问题分析
 2