扫一扫 加微信
首页 > 期刊论文 > 论文摘要
分散固相萃取-超高效液相色谱-串联质谱法同时测定土壤中新烟碱类农药及其代谢物的残留量
          
Simultaneous Determination of Residues of Neonicotinoid Pesticides and Their Metabolites in Soil by Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry with Disperse Solid Phase Extraction

摘    要
考虑到采用现有方法提取烯啶虫胺回收率较低,并且缺乏同时检测土壤中新烟碱类农药及其代谢物的方法,开展了题示研究工作。采集离地表20 cm以内的土壤样品,风干、除杂、过筛后分取5 g,加入3.0 mL水,摇匀,静置10 min。加入10 mL含1.0%(体积分数)乙酸的乙腈溶液,振荡30 min,加入5.0 g无水硫酸镁和1.0 g氯化钠,剧烈振荡1 min,于4℃离心5 min。取0.15 g无水硫酸镁、0.05 g N-丙基乙二胺(PSA)置于5 mL具塞离心管中,再加入2.0 mL上述样品提取液,涡旋振荡1 min,于4℃离心3 min。分取0.5 mL上清液,加入0.5 mL水,混匀后过0.2 μm滤膜。收集滤液,采用超高效液相色谱-串联质谱仪检测,14种目标物(包括10种新烟碱类农药和4种代谢物)在Waters ACQUITY UPLC HSS T3色谱柱上用不同体积比的含5 mmol·L-1甲酸铵的甲醇溶液和含5 mmol·L-1甲酸铵的0.1%(体积分数)甲酸溶液的混合溶液梯度洗脱分离,用电喷雾离子源正离子(ESI+)模式电离,多反应监测(MRM)模式检测,基质匹配法定量。结果显示:14种目标物的质量浓度分别在2.0~200.0 μg·L-1(噻虫胺)和0.5~200.0 μg·L-1(其他13种目标物)内和对应的峰面积呈线性关系,检出限(3S/N)为0.36~2.49 μg·kg-1。按照标准加入法进行回收试验,回收率为75.4%~112%,测定值的相对标准偏差(n=6)小于9.0%。方法用于16份果园土壤样品的分析,检出了吡虫啉(13份样品)、噻虫嗪(8份样品)和噻虫胺(1份样品),检出量分别为0.007~0.31 mg·kg-1,0.005~0.28 mg·kg-1和0.009 mg·kg-1
标    签 分散固相萃取   超高效液相色谱-串联质谱法   新烟碱类农药   代谢物   土壤   残留量   disperse solid phase extraction   ultra-high performance liquid chromatography-tandem mass spectrometry   neonicotinoid pesticide   metabolite   soil   residue  
 
Abstract
Considering the low recovery of nitenpyram using existing methods and lack of methods for simultaneously detecting neonicotinoid pesticides and their metabolites in soil, this study was conducted mentioned by the title. Soil samples were collected within 20 cm of the soil surface, dried by air, removed from impurities and sieved. An aliquot (5 g) was taken, and mixed with 3.0 mL of water. The mixture was shaken, settled for 10 min, and mixed with 10 mL of acetonitrile solution containing 1.0% (volume fraction) acetic acid. After shaking for 30 min, 5.0 g of anhydrous magnesium sulfate and 1.0 g of sodium chloride were added, and the mixture was shaken vigorously for 1 min, and centrifuged at 4℃ for 5 min. Then 0.15 g of anhydrous magnesium sulfate and 0.05 g of PSA were placed into a 5 mL-centrifuge tube with a stopper, and 2.0 mL of the above sample extract was added. The mixed solution was shaken for 1 min by vortex, and centrifuged at 4℃ for 3 min. An aliquot (0.5 mL) of the supernatant was taken, and mixed with 0.5 mL of water. After mixing well, the resulting solution was passed through a 0.2 μm filter membrane. The filtrate was collected and detected by the ultra-high performance liquid chromatograph-tandem mass spectrometer. Fourteen targets (including 10 neonicotinoid pesticides and 4 metabolites) were separated on the Waters ACQUITY UPLC HSS T3 chromatographic column by gradient elution with mixed solutions composed of methanol solution containing 5 mmol·L-1 ammonium formate and 0.1% (volume fraction) formic acid solution containing 5 mmol·L-1 ammonium formate at different volume ratios, ionized by the ESI+ mode, detected by the MRM mode, and quantified by matrix matching method. It was shown that linear relationships between values of the mass concentration and the corresponding peak area of 14 targets were kept in the ranges of 2.0-200.0 μg·L-1 (clothianidin) and 0.5-200.0 μg·L-1 (other 13 targets), with detection limits (3S/N) in the range of 0.36-2.49 μg·kg-1. Test for recovery was made according to the standard addition method, giving recoveries in the range of 75.4%-112%, and RSDs (n=6) of the determined values were less than 9.0%. The proposed method was applied to the analysis of 16 orchard soil samples, and imidacloprid (13 samples), thiamethoxam (8 samples), and clothianidin (1 sample) were detected, with detection amounts of 0.007-0.31 mg·kg-1, 0.005-0.28 mg·kg-1 and 0.009 mg·kg-1, respectively.

中图分类号 O657.63   DOI 10.11973/lhjy-hx202311006

 
  中国光学期刊网论文下载说明


所属栏目 工作简报

基金项目 北京市农林科学院科技创新能力建设专项(KJCX20230817、KJCX20230309);北京市农林科学院青年科研基金(QNJJ202116)

收稿日期 2023/2/5

修改稿日期

网络出版日期

作者单位点击查看

联系人作者李成(lic@iqstt.cn)

备注平华,高级实验师,博士,主要从事农药残留分析和风险评估研究的工作

引用该论文: PING Hua,ZHAO Tianyu,MA Zhihong,KONG Hongling,LI Yang,LI Cheng. Simultaneous Determination of Residues of Neonicotinoid Pesticides and Their Metabolites in Soil by Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry with Disperse Solid Phase Extraction[J]. Physical Testing and Chemical Analysis part B:Chemical Analysis, 2023, 59(11): 1276~1283
平华,赵天宇,马智宏,孔红玲,李杨,李成. 分散固相萃取-超高效液相色谱-串联质谱法同时测定土壤中新烟碱类农药及其代谢物的残留量[J]. 理化检验-化学分册, 2023, 59(11): 1276~1283


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】程宏英,沈祖妍,金艺伦,等.球壳TiO2-吡咯共聚膜的制备及吡虫啉测定[J].分析试验室, 2022(11):1280-1284.
 
【2】YU Z M, LI X F, WANG S R, et al. The human and ecological risks of neonicotinoid insecticides in soils of an agricultural zone within the Pearl River Delta, South China[J]. Environmental Pollution, 2021,284:117358.
 
【3】SIMON-DELSO N, AMARAL-ROGERS V, BELZUNCES L P, et al. Systemic insecticides (neonicotinoids and fipronil):Trends, uses, mode of action and metabolites[J]. Environmental Science and Pollution Research International, 2015,22(1):5-34.
 
【4】史晶亮,杨乐,廖春华,等.新烟碱类杀虫剂对蜜蜂毒理作用的研究进展[J].农药, 2019,58(1):6-10.
 
【5】方松.氟啶虫胺腈的土壤生态毒理效应研究[D].泰安:山东农业大学, 2021.
 
【6】马跃,毛亚萍,刘芙,等.新烟碱类杀虫剂对人类及哺乳动物的生殖毒性作用[J].沈阳医学院学报, 2022,24(2):191-195.
 
【7】European Food Safety Authority. Neonicotinoids:Risk to bees confirmed.[2018-02-28]. https://www.efsa.europa.eu/en/press/news/180228.
 
【8】XU T B, DYER D G, MCCONNELL L L, et al. Clothianidin in agricultural soils and uptake into corn pollen and canola nectar after multiyear seed treatment applications[J]. Environmental Toxicology and Chemistry, 2016,35(2):311-321.
 
【9】BONMATIN J M, MITCHELL E A D, GLAUSER G, et al. Residues of neonicotinoids in soil, water and people's hair:A case study from three agricultural regions of the Philippines[J]. The Science of the Total Environment, 2021,757:143822.
 
【10】李田田,郑珊珊,王晶,等.新烟碱类农药的污染现状及转化行为研究进展[J].生态毒理学报, 2018,13(4):9-21.
 
【11】BONMATIN J M, NOOME D A, MORENO H, et al. A survey and risk assessment of neonicotinoids in water, soil and sediments of Belize[J]. Environmental Pollution, 2019,249:949-958.
 
【12】YANG B X, MA W, WANG S, et al. Determination of eight neonicotinoid insecticides in Chinese cabbage using a modified QuEChERS method combined with ultra performance liquid chromatography-tandem mass spectrometry[J]. Food Chemistry, 2022,387:132935.
 
【13】马杰,郝莹,郭礼强,等.食品中新烟碱类杀虫剂污染与控制研究进展[J].食品安全质量检测学报, 2022,13(1):278-286.
 
【14】ZHAO Y Y, YANG J W, REN J B, et al. Exposure level of neonicotinoid insecticides in the food chain and the evaluation of their human health impact and environmental risk:An overview[J]. Sustainability, 2020,12(18):7523.
 
【15】ZHANG Q, LI Z, CHANG C H, et al. Potential human exposures to neonicotinoid insecticides:A review[J]. Environmental Pollution, 2018,236:71-81.
 
【16】SONG S M, ZHANG T, HUANG Y Y, et al. Urinary metabolites of neonicotinoid insecticides:levels and recommendations for future biomonitoring studies in China[J]. Environmental Science & Technology, 2020,54(13):8210-8220.
 
【17】ZHANG Q, LU Z B, CHANG C H, et al. Dietary risk of neonicotinoid insecticides through fruit and vegetable consumption in school-age children[J]. Environment International, 2019,126:672-681.
 
【18】RAHMAN M M, ABD EL-ATY A M, CHOI J H, et al. Consequences of the matrix effect on recovery of dinotefuran and its metabolites in green tea during tandem mass spectrometry analysis[J]. Food Chemistry, 2015,168:445-453.
 
【19】李清芳,邓茂,姚靖,等.加压流体萃取-液相色谱法测定土壤中4种新烟碱类杀虫剂[J].贵州师范大学学报(自然科学版), 2020,38(6):28-32.
 
【20】ZHOU Y, LU X X, FU X F, et al. Development of a fast and sensitive method for measuring multiple neonicotinoid insecticide residues in soil and the application in parks and residential areas[J]. Analytica Chimica Acta, 2018,1016:19-28.
 
【21】POOK C, GRITCAN I. Validation and application of a modified QuEChERS method for extracting neonicotinoid residues from New Zealand maize field soil reveals their persistence at nominally hazardous concentrations[J]. Environmental Pollution, 2019,255:113075.
 
【22】ARIA M M, SORRIBES-SORIANO A, JAFARI M T, et al. Uptake and translocation monitoring of imidacloprid to chili and tomato plants by molecularly imprinting extraction-ion mobility spectrometry[J]. Microchemical Journal, 2019,144:195-202.
 
【23】BESIL N, CESIO V, HEINZEN H, et al. Matrix effects and interferences of different citrus fruit coextractives in pesticide residue analysis using ultrahigh-performance liquid chromatography-high-resolution mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2017,65(23):4819-4829.
 
相关信息
   标题 相关频次
 凝胶色谱在线净化-气相色谱-质谱联用快速测定土壤中六六六和滴滴涕残留
 5
 不同前处理方式结合超高效液相色谱-串联质谱法测定当归中30种禁用农药残留量
 4
 超高效液相色谱-串联质谱法同时测定党参和当归中23种植物生长调节剂的残留量
 4
 超高效液相色谱-串联质谱法同时测定土壤中13种硝基咪唑类抗生素的含量
 4
 二硫苏糖醇保护-改进的QuEChERS吸附剂净化-超高效液相色谱-串联质谱法测定丹参中30种农药的残留量
 4
 超高效液相色谱-串联质谱法测定鸡蛋中农药及其代谢物的含量
 3
 超高效液相色谱-串联质谱法测定乳制品中苯并咪唑类药物及其代谢物的残留量
 3
 超高效液相色谱-串联质谱法测定水产品中孔雀石绿及其代谢物残留量
 3
 加速溶剂萃取-凝胶渗透色谱法净化-气相色谱-串联质谱法测定土壤中常见的7种农药残留量
 3
 20管线钢在新疆塔河地区土壤中的腐蚀行为
 2
 304奥氏体不锈钢护栏断裂失效分析
 2
 AZ31镁合金手机外壳冲压模具的设计与成形工艺
 2
 BondElutPBA固相萃取柱净化-高效液相色谱-串联质谱法同时测定鸡肉中金刚烷胺和利巴韦林的残留量
 2
 GF-AAS法和HG-AFS法测定土壤中铅的分析方法比较
 2
 HJ741-2015试验条件的优化及在土壤中27种挥发性有机物检测中的应用
 2
 Q235钢在3种典型土壤环境中的腐蚀行为
 2
 QuEChERS-超高效液相色谱-串联质谱法测定茶叶中伏马毒素B1、B2、B3的含量
 2
 QuEChERS-超高效液相色谱-串联质谱法测定六堡茶中黄曲霉毒素B1的含量
 2
 QuEChERS-高效液相色谱法快速测定稻谷和土壤中16种多环芳烃
 2
 QuEChERS结合超高效液相色谱-串联质谱法测定果汁和果酒中5种真菌毒素的含量
 2
 QuEChERS结合气相色谱-串联质谱法测定西洋参中53种常见农药的残留量
 2
 QuEChERS净化-超高效液相色谱-串联质谱法同时测定黑枸杞中46种农药残留量
 2
 QuEChERS净化-高效液相色谱法测定蔬菜中除虫脲和灭幼脲的残留量
 2
 QuEChERS-气相色谱-串联质谱法测定白附子中35种禁用农药的残留量
 2
 QuEChERS样品制备系统联合气相色谱-串联质谱法测定松林土壤中6种杀虫剂的残留量
 2
 X80钢焊接接头在抚顺地区三种典型介质中的腐蚀行为
 2
 X射线荧光光谱法测定新研制土壤标准物质中11种元素的含量
 2
 氨水密闭熔融-离子色谱法测定土壤和沉积物中碘的含量
 2
 不同混合酸消解样品对电感耦合等离子体原子发射光谱法测定土壤中重金属含量的影响
 2
 超高效液相色谱-串联质谱法测定4种禽畜肉中泰地罗新残留量
 2