扫一扫 加微信
首页 > 期刊论文 > 论文摘要
荧光可视化技术在食品分析中的应用进展
          
Application Progress of Fluorescence Visualization Technology in Food Analysis

摘    要
介绍了常见的荧光可视化传感器(比率、纸基、分子印迹荧光传感器),荧光可视化传感机制(荧光共振能量转移、内滤效应、光诱导电子转移、聚集诱导猝灭、聚集性诱导发射、分子内电荷转移、金属-配体电荷转移等)及其判定方法,综述了量子点(普通量子点和生物质量子点)、有机荧光物质和金属荧光纳米团簇等发光物质作为荧光可视化探针在食品分析中的应用,并对其发展前景进行了展望(引用文献69篇)。
标    签 荧光可视化技术   食品分析   应用进展   fluorescence visualization technology   food analysis   application progress  
 
Abstract
Common fluorescence visualization sensors (ratiometric, paper-based, and molecularly imprinted fluorescence sensors), fluorescence visualization sensing mechanisms (fluorescence resonance energy transfer, internal filtering effect, photoinduced electron transfer, aggregation-induced burst, aggregation-induced emission, intramolecular charge transfer, metal-ligand charge transfer, etc.) and their determination methods were introduced. The application of fluorescence visualization probes made by luminescent substances such as quantum dots (common quantum dots and biomass quantum dots), organic fluorescence material, and metal fluorescence nanoclusters in the food analysis was reviewed, and the development future was prospected (69 ref. cited).

中图分类号 O657.32   DOI 10.11973/lhjy-hx202311021

 
  中国光学期刊网论文下载说明


所属栏目 综述

基金项目 桂林市科技计划项目(20220118-1)

收稿日期 2022/6/20

修改稿日期

网络出版日期

作者单位点击查看


备注王小燕,硕士研究生,主要研究方向为荧光可视化技术及分析应用

引用该论文: WANG Xiaoyan,LIU Zheng,GUO Rongting,DING Zhiyuan,Lü Yiju,KONG Xiangfei. Application Progress of Fluorescence Visualization Technology in Food Analysis[J]. Physical Testing and Chemical Analysis part B:Chemical Analysis, 2023, 59(11): 1357~1364
王小燕,刘峥,郭容婷,丁智远,吕奕菊,孔翔飞. 荧光可视化技术在食品分析中的应用进展[J]. 理化检验-化学分册, 2023, 59(11): 1357~1364


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】MOTSHAKERI M, SHARMA M, PHILLIPS A R J, et al. Electrochemical methods for the analysis of milk[J]. Journal of Agricultural and Food Chemistry, 2022,70(8):2427-2449.
 
【2】TARTAGLIA A, ROMASCO T, D'OVIDIO C, et al. Determination of phenolic compounds in human saliva after oral administration of red wine by high performance liquid chromatography[J]. Journal of Pharmaceutical and Biomedical Analysis, 2022,209:114486.
 
【3】ZSILA F. An overlooked UV spectroscopic tool for sensing coil-to-helix and helix-to-coil conformational transitions of proteins and peptides[J]. Analytical Biochemistry, 2022,639:114512.
 
【4】李影影,冯素玲,李雪.蛋白胨碳量子点"关-开"型荧光探针检测食品中草酸[J].分析试验室, 2022,41(5):518-522.
 
【5】BAO Y W, CUI H J, TIAN J L, et al. Novel pH sensitivity and colorimetry-enhanced anthocyanin indicator films by chondroitin sulfate co-pigmentation for shrimp freshness monitoring[J]. Food Control, 2022,131:108441.
 
【6】黄学者,纪欣欣,姜晓林,等.同位素稀释-气相色谱-质谱法测定蜂蜜中甘露糖含量[J].分析试验室, 2022,41(9):1034-1040.
 
【7】LIANG W Y, ZHENG F J, CHEN T T, et al. Nontargeted screening method for veterinary drugs and their metabolites based on fragmentation characteristics from ultrahigh-performance liquid chromatography-high-resolution mass spectrometry[J]. Food Chemistry, 2022,369:130928.
 
【8】ORLOV A V, MALKEROV J A, NOVICHIKHIN D O, et al. Express high-sensitive detection of ochratoxin A in food by a lateral flow immunoassay based on magnetic biolabels[J]. Food Chemistry, 2022,383:132427.
 
【9】王海倩.多色荧光纸质传感器及对重金属离子现场快速可视化定量检测[D].合肥:合肥工业大学, 2020.
 
【10】韩磊.比率荧光和可视化传感器的构建及其在环境和食品分析中的应用研究[D].重庆:西南大学, 2021.
 
【11】王维力,吉美奇,张隆强,等.基于g-CNQDs的荧光共振能量转移法检测银离子[J].分析试验室, 2022,41(11):1307-1311.
 
【12】GULERIA A, GANDHI V V, KUNWAR A, et al. PEGylated silicon oxide nanocomposites with blue photoluminescence prepared by a rapid electron-beam irradiation approach:Applications in IFE-based Cr (VI) sensing and cell-imaging[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022,640:128483.
 
【13】PANDA S K, MISHRA S, MAMIDI P, et al. An efficient PET-based probe for detection and discrimination of Zn2+ and Cd2+ in near-aqueous media and live-cell imaging[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2022,427:113816.
 
【14】ELABD A A, ELHEFNAWY O A. A new benzeneacetic acid derivative-based sensor for assessing thorium (Ⅳ) in aqueous solution based on aggregation caused quenching (ACQ) and aggregation induced emission (AIE)[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2022,428:113866.
 
【15】ZHOU P, HAN K L. ESIPT-based AIE luminogens:Design strategies, applications, and mechanisms[J]. Aggregate, 2022,3(5):e160.
 
【16】XU C G, WU T A, DUAN L Z, et al. Rational design of ICT-based fluorescent probe with AIE and NIR properties for hypochlorite determination[J]. Journal of the Electrochemical Society, 2022,169(1):17514.
 
【17】MUJTHABA A A, KUMAR S K A. Dual anion colorimetric and fluorometric sensing of arsenite and cyanide ions involving MLCT and CHEF pathways[J]. Journal of Molecular Structure, 2022,1250:131677.
 
【18】FAN T T, LIU F F, FAN C B, et al. A dual-functional chemical sensor for the detection of Cu2+ and Cd2+ based on the photochromic diarylethene[J]. Tetrahedron, 2022,104:132583.
 
【19】RETTIG W, LAPOUYADE R. Fluorescence probes based on twisted intramolecular charge transfer (TICT) states and other adiabatic photoreactions[M]//LAKOWICZ J R. Topics in fluorescence spectroscopy. Boston:Kluwer Academic Publishers, 2006:109-149.
 
【20】WANG Y, NI Y N. Molybdenum disulfide quantum dots as a photoluminescence sensing platform for 2,4,6-trinitrophenol detection[J]. Analytical Chemistry, 2014,86(15):7463-7470.
 
【21】LI P, ZHAO N, WANG S J, et al. Hydrogen bond-induced planarity and ESPT process:A theoretical insight into the sensing mechanism of a fluorescent probe for hypochlorous acid[J]. Chemical Physics Letters, 2022,793:139466.
 
【22】WU J S, LIU W M, GE J C, et al. New sensing mechanisms for design of fluorescent chemosensors emerging in recent years[J]. Chemical Society Reviews, 2011,40(7):3483-3495.
 
【23】GAO N, HUANG J, WANG L Y, et al. Ratiometric fluorescence detection of phosphate in human serum with a metal-organic frameworks-based nanocomposite and its immobilized agarose hydrogels[J]. Applied Surface Science, 2018,459:686-692.
 
【24】NISHAT S, JAFRY A T, MARTINEZ A W, et al. Paper-based microfluidics:Simplified fabrication and assay methods[J]. Sensors and Actuators B:Chemical, 2021,336:129681.
 
【25】SUN Z B, GAO Y L, NIU Z, et al. Programmable-printing paper-based device with a MoS2 NP and gmp/Eu-cit fluorescence couple for ratiometric tetracycline analysis in various natural samples[J]. ACS Sensors, 2021,6(11):4038-4047.
 
【26】SHRIVAS K, KANT T, PATEL S, et al. Inkjet-printed paper-based colorimetric sensor coupled with smartphone for determination of mercury (Hg2+)[J]. Journal of Hazardous Materials, 2021,414:125440.
 
【27】PATEL S, JAMUNKAR R, SINHA D, et al. Recent development in nanomaterials fabricated paper-based colorimetric and fluorescent sensors:A review[J]. Trends in Environmental Analytical Chemistry, 2021,31:e00136.
 
【28】LI W, ZHANG X Y, MIAO C Y, et al. Fluorescent paper-based sensor based on carbon dots for detection of folic acid[J]. Analytical and Bioanalytical Chemistry, 2020,412(12):2805-2813.
 
【29】SIVAKUMAR R, LEE N Y. Paper-based fluorescence chemosensors for metal ion detection in biological and environmental samples[J]. BioChip Journal, 2021,15(3):216-232.
 
【30】ENSAFI A A, KAZEMIFARD N, REZAEI B. Development of a selective prilocaine optical sensor based on molecularly imprinted shell on CdTe quantum dots[J]. Sensors and Actuators B:Chemical, 2017,242:835-841.
 
【31】SHAMIRIAN A, GHAI A, SNEE P T. QD-based FRET probes at a glance[J]. Sensors, 2015,15(6):13028-13051.
 
【32】CHEN S A, YU Y L, WANG J H. Inner filter effect-based fluorescent sensing systems:A review[J]. Analytica Chimica Acta, 2018,999:13-26.
 
【33】VELASCO V A, CHACON W D C, SOTO A M C, et al. Carbon quantum dots based on carbohydrates as nano sensors for food quality and safety[J]. Starch-Stärke, 2021,73(11/12):2100044.
 
【34】SHARMA S, GHOSH K S. Recent advances (2017-20) in the detection of copper ion by using fluorescence sensors working through transfer of photo-induced electron (PET), excited-state intramolecular proton (ESIPT) and Förster resonance energy (FRET)[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2021,254:119610.
 
【35】LUO J, XIE Z, LAM J W, et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole[J]. Chemical Communications, 2001(18):1740-1741.
 
【36】LI X C, ZHAO S J, LI B L, et al. Advances and perspectives in carbon dot-based fluorescent probes:Mechanism, and application[J]. Coordination Chemistry Reviews, 2021,431:213686.
 
【37】LIU Y H, WEI Z N, DUAN W X, et al. A dual-mode sensor for colorimetric and "turn-on" fluorescent detection of ascorbic acid[J]. Dyes and Pigments, 2018,149:491-497.
 
【38】FANG A J, LONG Q, WU Q Q, et al. Upconversion nanosensor for sensitive fluorescence detection of Sudan I-IV based on inner filter effect[J]. Talanta, 2016,148:129-134.
 
【39】DENG H H, HUANG K Y, HE S B, et al. Rational design of high-performance donor-linker-acceptor hybrids using a schiff base for enabling photoinduced electron transfer[J]. Analytical Chemistry, 2020,92(2):2019-2026.
 
【40】YANG Q, LI J H, WANG X Y, et al. Strategies of molecular imprinting-based fluorescence sensors for chemical and biological analysis[J]. Biosensors and Bioelectronics, 2018,112:54-71.
 
【41】WANG X, LI L W, JIANG H, et al. Highly selective and sensitive fluorescence detection of tetracyclines based on novel tungsten oxide quantum dots[J]. Food Chemistry, 2022,374:131774.
 
【42】REN H X, MAO M X, LI M, et al. A fluorescent detection for paraquat based on β-CDs-enhanced fluorescent gold nanoclusters[J]. Foods, 2021,10(6):1178.
 
【43】YANG Y Z, XIAO N, LIU S G, et al. pH-induced aggregation of hydrophilic carbon dots for fluorescence detection of acidic amino acid and intracellular pH imaging[J]. Materials Science and Engineering:C, 2020,108:110401.
 
【44】YANG W, WENG C Y, LI X Y, et al. An "on-off" ratio photoluminescence sensor based on catalytically induced PET effect by Fe3O4 NPs for the determination of coumarin[J]. Food Chemistry, 2022,368:130838.
 
【45】GHAFFARKHAH A, HOSSEINI E, KAMKAR M, et al. Synthesis, applications, and prospects of graphene quantum dots:A comprehensive review[J]. Small, 2022,18(2):2102683.
 
【46】ZOU C, LIU Z, WANG X, et al. A paper-based visualization chip based on nitrogen-doped carbon quantum dots nanoprobe for Hg(Ⅱ) detection[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2022,265:120346.
 
【47】HU X T, SHI J Y, SHI Y Q, et al. Use of a smartphone for visual detection of melamine in milk based on Au@carbon quantum dots nanocomposites[J]. Food Chemistry, 2019,272:58-65.
 
【48】YE Y W, WU T T, JIANG X T, et al. Portable smartphone-based QDs for the visual onsite monitoring of fluoroquinolone antibiotics in actual food and environmental samples[J]. ACS Applied Materials & Interfaces, 2020,12(12):14552-14562.
 
【49】QIU J Y, NA L H, LI Y M, et al. N,S-GQDs mixed with CdTe quantum dots for ratiometric fluorescence visual detection and quantitative analysis of malachite green in fish[J]. Food Chemistry, 2022,390:133156.
 
【50】CHU S Y, WANG H Q, LING X A, et al. A portable smartphone platform using a ratiometric fluorescent paper strip for visual quantitative sensing[J]. ACS Applied Materials & Interfaces, 2020,12(11):12962-12971.
 
【51】KUO X, JIANG S, PARK S J, et al. A review:Recent advances in preparations and applications of heteroatom-doped carbon quantum dots[J]. Dalton Trans, 2020,49:6915-6938.
 
【52】ARKIN K, ZHENG Y, BEI Y, et al. Construction of dual-channel ratio sensing platform and molecular logic gate for visual detection of oxytetracycline based on biomass carbon dots prepared from cherry tomatoes stalk[J]. Chemical Engineering Journal, 2023,464:142522.
 
【53】HU Y F, LI J F, LI X F. Leek-derived codoped carbon dots as efficient fluorescent probes for dichlorvos sensitive detection and cell multicolor imaging[J]. Analytical and Bioanalytical Chemistry, 2019,411(29):7879-7887.
 
【54】KORAH B K, CHACKO A R, MATHEW S, et al. Biomass-derived carbon dots as a sensitive and selective dual detection platform for fluoroquinolones and tetracyclines[J]. Analytical and Bioanalytical Chemistry, 2022,414(17):4935-4951.
 
【55】LIAN Z, ZHAO M, WANG J, et al. Dual-emission ratiometric fluorescent sensor based molecularly imprinted nanoparticles for visual detection of okadaic acid in seawater and sediment[J]. Sensors and Actuators:B. Chemical, 2021,346:130465.
 
【56】FAN P F, LIU C, HU C C, et al. Green and facile synthesis of iron-doped biomass carbon dots as a dual-signal colorimetric and fluorometric probe for the detection of ascorbic acid[J]. New Journal of Chemistry, 2022,46(5):2526-2533.
 
【57】黄杨,高田毅,朱宏星,等.基于生物基质碳点构建荧光探针用于腌腊肉制品中亚硝酸盐的检测[J].食品工业科技, 2022,43(14):354-361.
 
【58】HUANG Q S, LIU T T, MA D Y, et al. Aggregation-induced luminescence enhancement, anion sensing, solvent-selective fluorescence quenching of arylpyrazoline fluorescent probe[J]. Dyes and Pigments, 2022,198:110014.
 
【59】RAO N, LE Y, LI D, et al. A new phenothiazine-based fluorescent probe for detection of hydrazine with naked-eye color change properties[J]. Chemical Papers, 2022, 76:267-275.
 
【60】DUAN N, WANG H, LI Y N, et al. The research progress of organic fluorescent probe applied in food and drinking water detection[J]. Coordination Chemistry Reviews, 2021,427:213557.
 
【61】THANAYUPONG E, SUTTISINTONG K, SUKWATTANASINITT M, et al. Turn-on fluorescent sensor for the detection of cyanide based on a novel dicyanovinyl phenylacetylene[J]. New Journal of Chemistry, 2017,41(10):4058-4064.
 
【62】SUN F, YANG L, LI S J, et al. New fluorescent probes for the sensitive determination of glyphosate in food and environmental samples[J]. Journal of Agricultural and Food Chemistry, 2021,69(43):12661-12673.
 
【63】YANG L, WANG F, ZHAO J, et al. A facile dual-function fluorescent probe for detection of phosgene and nitrite and its applications in portable chemosensor analysis and food analysis[J]. Talanta, 2021,221:121477.
 
【64】PACHECO I, BUZEA C. Nanoparticle uptake by plants:beneficial or detrimental?[M]//Phytotoxicity of nanoparticles. Cham:Springer International Publishing, 2018:1-61.
 
【65】KHAN I M, NIAZI S, YU Y, et al. Aptamer induced multicolored AuNCs-WS2 "turn on" FRET nano platform for dual-color simultaneous detection of aflatoxin B1 and zearalenone[J]. Analytical Chemistry, 2019,91(21):14085-14092.
 
【66】WANG D W, WANG Z Q, WANG X B, et al. Functionalized copper nanoclusters-based fluorescent probe with aggregation-induced emission property for selective detection of sulfide ions in food additives[J]. Journal of Agricultural and Food Chemistry, 2020,68(40):11301-11308.
 
【67】SHI Y Q, LI W T, FENG X P, et al. Sensing of mercury ions in Porphyra by copper@gold nanoclusters based ratiometric fluorescent aptasensor[J]. Food Chemistry, 2021,344:128694.
 
【68】LI Y, HE Y, GE Y, et al. Smartphone-assisted visual ratio-fluorescence detection of hypochlorite based on copper nanoclusters[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2021,255:119740.
 
相关信息
   标题 相关频次
 Al2O3增强镍-磷-钨复合镀层的制备及性能
 2
 氨基甲磺酸席夫碱-邻菲啰啉镍(Ⅱ)配合物与DNA反应的共振散射光谱的研究及应用
 2
 电感耦合等离子体质谱法在不同药典中的方法体系和在中药无机成分研究中的应用进展
 2
 光致阴极保护研究进展
 2
 含二茂铁结构单元的阴离子受体的合成、表征及阴离子识别性能
 2
 含缩氨基硫脲席夫碱侧链的苯并菲阴离子受体的合成及识别研究
 2
 合成卡西酮类新精神活性物质检测方法的应用进展
 2
 机器视觉在飞机结构损伤检测中的应用进展与展望
 2
 基于金纳米粒子光学性质的比色传感器及其在食品安全检测中的应用
 2
 金属表面席夫碱缓蚀剂自组装膜的制备及性能研究现状
 2
 金属有机骨架材料修饰玻碳电极循环伏安法测定维生素C片中抗坏血酸
 2
 聚乙二醇月桂酸单酯席夫碱基非离子型表面活性剂的合成及缓蚀性能
 2
 流动注射-化学发光法在药物分析中的应用进展
 2
 绿色缓蚀剂研究现状与展望
 2
 脉冲电沉积镍-钨-铁-镧纳米晶合金镀层的电催化析氢性能
 2
 牛磺酸席夫碱修饰铜电极循环伏安法测定过氧化氢
 2
 配合物修饰电极的制备及其在环境和生物分析中的应用
 2
 石墨烯在生物传感器中的应用
 2
 石油生产中腐蚀的原因及缓蚀剂的应用
 2
 双席夫碱铜配合物修饰玻碳电极用于碳酸饮料中苯甲酸的测定
 2
 应用荧光光度法研究3,5-二溴水杨醛缩牛磺酸席夫碱与牛血清白蛋白相互作用
 2
 荧光光谱法对邻香草醛缩精氨酸席夫碱与胰蛋白酶相互作用的研究及其应用
 2
 荧光量子点的制备及分析应用
 2
 有机缓蚀剂在钢筋混凝土腐蚀与防护领域的研究现状及发展趋势
 2
 原子吸收光谱法在测定食品中金属元素的研究进展
 2
 自组装席夫碱缓蚀膜在油田水中对碳钢的缓蚀行为
 2
 15Ni3CrMoV与10Ni5CrMoV异种钢对接接头的显微组织及力学性能
 1
 Ni-P-SnO2复合镀层的制备及其性能
 1
 电沉积制备纳米晶镍-钨-稀土合金镀层工艺及性能
 1
 电化学方法研究交流干扰对阴极保护电位的影响
 1