扫一扫 加微信
首页 > 期刊论文 > 论文摘要
含缺陷陶瓷材料强度预测的研究现状
          
Research Progress in Strength Prediction of Ceramic Materials with Flaws

摘    要
陶瓷具有轻质、高硬、耐磨等优异性能,但在结构材料领域的实际应用仍极为谨慎,根本原因在于陶瓷的缺陷敏感性及尚不完善的陶瓷失效预测理论。介绍了陶瓷制备过程中常见的缺陷,分析了陶瓷强度随机分布的物理本质,综述了缺陷作用下陶瓷强度预测的研究现状;提出未来可综合运用无损检测、原位测试和计算机模拟技术,探究缺陷致裂机制及陶瓷强度响应定量规律,同时关注在实际服役环境(疲劳、热冲击等)下缺陷对陶瓷强度的影响。
标    签 陶瓷   强度预测   缺陷   统计   定量   ceramic   strength prediction   flaw   statistics   quantitative  
 
Abstract
Ceramics have numerous excellent properties such as low density, high hardness and wear resistance, but their practical applications in the structural materials field are still extremely cautious. The fundamental reasons are the flaw sensitivity of ceramics and the imperfect theory of ceramic failure prediction. The common flaws in the process of ceramic preparation are introduced, and the physical nature of the random distribution of ceramic strength is analyzed, and then the research status of strength prediction in ceramics under the action of flaws is summarized. It is pointed out that non-destructive testing, in-situ testing and computer simulation technology could be comprehensively used in the future to explore the mechanism of flaw inducing cracking and the quantitative law of ceramic-strength response, and meanwhile attention should be paid to the influence of flaws on ceramic-strength in the actual service environment(fatigue, thermal shock, etc.).

中图分类号 TB321   DOI 10.11973/jxgccl202310001

 
  中国光学期刊网论文下载说明


所属栏目 综述

基金项目 中国博士后科学基金第71批面上资助项目(2022M713216);江苏省自然科学基金资助项目(BK20201040);江苏省先进结构材料与应用技术重点实验室开放基金资助项目(ASMA202108);深圳职业技术学院博士后基金资助项目(4103-6021330011K0)

收稿日期 2022/8/22

修改稿日期 2023/8/3

网络出版日期

作者单位点击查看

联系人作者周鹏副教授

备注王安哲(1990-),男,安徽滁州人,副教授,博士

引用该论文: WANG Anzhe,WANG Shuai,ZHAO Xinyuan,ZHANG Jie,CHENG Yehong,ZHOU Peng. Research Progress in Strength Prediction of Ceramic Materials with Flaws[J]. Materials for mechancial engineering, 2023, 47(10): 1~8
王安哲,王帅,赵欣源,张洁,程业红,周鹏. 含缺陷陶瓷材料强度预测的研究现状[J]. 机械工程材料, 2023, 47(10): 1~8


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】陈琪,李同起,张大海,等.ZrB2材料的制备工艺与应用[J].硅酸盐通报,2020,39(3):873-884. CHEN Q,LI T Q,ZHANG D H,et al.Preparation process and application of ZrB2 materials[J].Bulletin of the Chinese Ceramic Society,2020,39(3):873-884.
 
【2】GOLLA B R,MUKHOPADHYAY A,BASU B,et al.Review on ultra-high temperature boride ceramics[J].Progress in Materials Science,2020,111:100651.
 
【3】SHI H T,LI Y Y,BAI X T,et al.Investigation of the orbit-spinning behaviors of the outer ring in a full ceramic ball bearing-steel pedestal system in wide temperature ranges[J].Mechanical Systems and Signal Processing,2021,149:107317.
 
【4】WANG H Y,HU K H,LU K A,et al.Experimental and numerical analysis on the leading-edge bulge effect during the recoating process in ceramic stereolithography[J].Additive Manufacturing,2022,51:102652.
 
【5】BLÁZQUEZ-CARMONA P,SANZ-HERRERA J A,MARTÍNEZ-VÁZQUEZ F J,et al.Structural optimization of 3D-printed patient-specific ceramic scaffolds for in vivo bone regeneration in load-bearing defects[J].Journal of the Mechanical Behavior of Biomedical Materials,2021,121:104613.
 
【6】LAWN B R.Fracture of brittle solids[M].2nd ed.Cambridge:Cambridge University Press,1993.
 
【7】ENGEL U,HVBNER H.Strength improvement of cemented carbides by hot isostatic pressing (HIP)[J].Journal of Materials Science,1978,13(9):2003-2012.
 
【8】NEUMAN E W,HILMAS G E,FAHRENHOLTZ W G.Mechanical behavior of zirconium diboride-silicon carbide-boron carbide ceramics up to 2200℃[J].Journal of the European Ceramic Society,2015,35(2):463-476.
 
【9】CHAMBERLAIN A L,FAHRENHOLTZ W G,HILMAS G E,et al.High-strength zirconium diboride-based ceramics[J].Journal of the American Ceramic Society,2004,87(6):1170-1172.
 
【10】龚江宏.陶瓷材料脆性断裂的显微结构效应[J].现代技术陶瓷,2021,42(增刊2):287-428. GONG J H.Microstructural effects in brittle fracture of ceramics[J].Advanced Ceramics,2021,42(S2):287-428.
 
【11】KUDYBA-JANSEN A A,HINTZEN H T,METSELAAR R.The influence of green processing on the sintering and mechanical properties of β-sialon[J].Journal of the European Ceramic Society,2001,21(12):2153-2160.
 
【12】SCHERRER S S,LOHBAUER U,DELLA BONA A,et al.ADM guidance-Ceramics:Guidance to the use of fractography in failure analysis of brittle materials[J].Dental Materials,2017,33(6):599-620.
 
【13】王安哲.硼化锆基超高温陶瓷材料力学性能的精确表征及方法研究[D].哈尔滨:哈尔滨工业大学,2018. WANG A Z.Accurate characterization and method study on the mechanical properties of zirconium boride based ultra-high temperature ceramics[D].Harbin:Harbin Institute of Technology,2018.
 
【14】丁尧.ZrB2基超高温陶瓷无损检测研究[D].哈尔滨:哈尔滨工业大学,2015. DING Y.Non-destructive testing research of ZrB2-based ultra high temperature ceramics[D].Harbin:Harbin Institute of Technology,2015.
 
【15】ZHANG C G,HU X Z,SERCOMBE T,et al.Prediction of ceramic fracture with normal distribution pertinent to grain size[J].Acta Materialia,2018,145:41-48.
 
【16】YANG S G,ZHANG C G,ZHANG X C.Probabilistic relation between stress intensity and fracture toughness in ceramics[J].Ceramics International,2020,46(12):20558-20564.
 
【17】OZAKI S,AOKI Y,OSADA T,et al.Finite element analysis of fracture statistics of ceramics:Effects of grain size and pore size distributions[J].Journal of the American Ceramic Society,2018,101(7):3191-3204.
 
【18】OZAKI S,YAMAGATA K,ITO C,et al.Finite element analysis of fracture behavior in ceramics:Prediction of strength distribution using microstructural features[J].Journal of the American Ceramic Society,2022,105(3):2182-2195.
 
【19】TAKEO K,AOKI Y,OSADA T,et al.Finite element analysis of the size effect on ceramic strength[J].Materials,2019,12(18):2885.
 
【20】NAKAMURA S,TANAKA S,KATO Z,et al.Strength-processing defects relationship based on micrographic analysis and fracture mechanics in alumina ceramics[J].Journal of the American Ceramic Society,2009,92(3):688-693.
 
【21】COOK R F,DELRIO F W.Determination of ceramic flaw populations from component strengths[J].Journal of the American Ceramic Society,2019,102(8):4794-4808.
 
【22】HOGAN J D,FARBANIEC L,SANO T,et al.The effects of defects on the uniaxial compressive strength and failure of an advanced ceramic[J].Acta Materialia,2016,102:263-272.
 
【23】INGLIS C E.Stresses in a plate due to the presence of cracks and sharp corners[J].Transactions of the Institute of Naval Architects,1913,55:193-198.
 
【24】LANGE F F.Fracture mechanics and microstructural design[M]//BRADT R C,HASSELMAN D P H,LANGE F F.Crack Growth and Microstructure.Boston,MA:Springer US,1978:799-819.
 
【25】IRWIN G R.Crack-extension force for a part-through crack in a plate[J].Journal of Applied Mechanics,1962,29(4):651-654.
 
【26】SMITH F W,ALAVI M J.Stress intensity factors for a penny shaped crack in a half space[J].Engineering Fracture Mechanics,1971,3(3):241-254.
 
【27】STONESIFER R B,BRUST F W,LEIS B N.Mixed-mode stress intensity factors for interacting semi-elliptical surface cracks in a plate[J].Engineering Fracture Mechanics,1993,45(3):357-380.
 
【28】KOBAYASHI A S,POLVANICH N,EMERY A F,et al.Surface flaws in a plate in bending[C]//Society of Engineering Science,Annual Meeting.Austin, Texas:[s.n.],1975:343-352.
 
【29】KATHIRESAN K.Three-dimensional linear elastic fracture mechanics analysis by a displacement hybrid finite element model[D].Atlanta:Georgia Institute of Technology,1976.
 
【30】RAJU I S,NEWMAN J C Jr.Improved stress-intensity factors for semi-elliptical surface cracks in finite-thickness plates[C]//The 4th International Conference on Structural Mechanics in Reactor Technology.San Francisco,CA:NASA,1977.
 
【31】RAJU I S,NEWMAN J C Jr.Stress-intensity factors for a wide range of semi-elliptical surface cracks in finite-thickness plates[J].Engineering Fracture Mechanics,1979,11(4):817-829.
 
【32】NEWMAN J C Jr,RAJU I S.An empirical stress-intensity factor equation for the surface crack[J].Engineering Fracture Mechanics,1981,15(1/2):185-192.
 
【33】STROBL S,SUPANCIC P,LUBE T,et al.Surface crack in tension or in bending:A reassessment of the Newman and Raju formula in respect to fracture toughness measurements in brittle materials[J].Journal of the European Ceramic Society,2012,32(8):1491-1501.
 
【34】YUKITAKA M,MASAHIRO E.Quantitative evaluation of fatigue strength of metals containing various small defects or cracks[J].Engineering Fracture Mechanics,1983,17(1):1-15.
 
【35】ANDO K,KIM B A,IWASA M,et al.Process zone size failure criterion and probabilistic fracture assessment curves for ceramics[J].Fatigue & Fracture of Engineering Materials and Structures,1992,15(2):139-149.
 
【36】SATO N,TAKAHASHI K.Evaluation of fracture strength of ceramics containing small surface defects introduced by focused ion beam[J].Materials,2018,11(3):457.
 
【37】WANG A,HU P,ZHAO X,et al.Modelling and experimental investigation of pore-like flaw-strength response in structural ceramics[J].Ceramics International,2020,46(10):14431-14438.
 
【38】GÓMEZ F J,GUINEA G V,ELICES M.Failure criteria for linear elastic materials with U-notches[J].International Journal of Fracture,2006,141(1):99-113.
 
【39】YANG S G,ZHANG C G,ZHANG X C.Notch radius effect on fracture toughness of ceramics pertinent to grain size[J].Journal of the European Ceramic Society,2020,40(12):4217-4223.
 
【40】ZHAO X Y,WANG A Z,CHEN Y Y,et al.Quantitative strength prediction of advanced ceramics with regular/irregular flaws in I-mode failure condition[J].Ceramics International,2021,47(22):31527-31535.
 
【41】ERDOGAN F,SIH G C.On the crack extension in plates under plane loading and transverse shear[J].Journal of Basic Engineering,1963,85(4):519-525.
 
【42】PETROVIC J J,MENDIRATTA M G.Mixed-mode fracture from controlled surface flaws in hot-pressed Si3N4[J].Journal of the American Ceramic Society,1976,59(3/4):163-167.
 
【43】FREIMAN S W,GONZALEZ A C,MECHOLSKY J J.Mixed-mode fracture in soda-lime glass[J].Journal of the American Ceramic Society,1979,62(3/4):206-208.
 
【44】WANG A Z,ZHAO X Y,HUANG M X,et al.A quantitative study of flaw/strength response in ultra-high temperature ceramics based on femtosecond laser method[J].Theoretical and Applied Fracture Mechanics,2020,110:102775.
 
【45】TANIGUCHI Y,KITAZUMI J,YAMADA T.Bending strength analysis of ceramics based on the statistical theory of stress and fracture location[J].Journal of the Society of Materials Science,Japan,1989,38(430):777-782.
 
【46】SAKAMOTO F,TAKAHASHI T,TATAMI J,et al.Prediction of strength based on defect analysis in Al2O3 ceramics via non-destructive and three-dimensional observation using optical coherence tomography[J].Journal of the Ceramic Society of Japan,2019,127(7):462-468.
 
【47】FLINN B D,BORDIA R K,ZIMMERMANN A,et al.Evolution of defect size and strength of porous alumina during sintering[J].Journal of the European Ceramic Society,2000,20(14/15):2561-2568.
 
【48】WANG A Z,HU P,DU B,et al.Effect of collinear flaws on flexural strength and fracture behavior of ZrB2-SiC ceramic[J].Ceramics International,2017,43(16):14488-14492.
 
【49】WANG A Z,DU B,HU P,et al.Accurate evaluation of critical flaw size in structural ceramics via femtosecond laser[J].Ceramics International,2018,44(18):23008-23013.
 
【50】MIRKHALAF M,DASTJERDI A K,BARTHELAT F.Overcoming the brittleness of glass through bio-inspiration and micro-architecture[J].Nature Communications,2014,5:3166.
 
【51】ZHAO Z K.Review of non-destructive testing methods for defect detection of ceramics[J].Ceramics International,2021,47(4):4389-4397.
 
【52】肖强宏,周强,王莹,等.一种基于敲击声时-频分析的陶瓷结构缺陷检测方法研究[J].中国陶瓷,2017,53(9):47-53. XIAO Q H,ZHOU Q,WANG Y,et al.Research on detecting method of ceramic structure defect based on coin-tap sound time-frequency analysis[J].China Ceramics,2017,53(9):47-53.
 
【53】赵海涛,褚亮.基于声发射的陶瓷材料损伤和增韧特性研究[J].中国陶瓷,2017,53(12):39-45. ZHAO H T,CHU L.Damage and toughening characteristics of ceramic by acoustic emission method[J].China Ceramics,2017,53(12):39-45.
 
【54】SFARRA S,IBARRA-CASTANEDO C,BENDADA A,et al.Comparative study for the nondestructive testing of advanced ceramic materials by infrared thermography and holographic interferometry[C]//Proceedings of SPIE 7661,Thermosense XXXII.Orlando,Florida:[s.n.],2010:200-209.
 
【55】EMAM S M,SAYYEDBARZANI S A.Dimensional deviation measurement of ceramic tiles according to ISO 10545-2 using the machine vision[J].The International Journal of Advanced Manufacturing Technology,2019,100(5/6/7/8):1405-1418.
 
【56】LI X L,ZENG S G,ZHENG S,et al.Surface crack detection of ceramic tile based on sliding filter and automatic region growth[J].Laser & Optoelectronics Progress,2019,56(21):211003.
 
【57】KO ARǦ ENSKÁ M,MANYCHOVÁ M.New possibilities of non-destructive testing of ceramic specimen integrity[J].Ceramics-Silikáty,2010,54(1):72-77.
 
【58】TSAI T H,JEYAPRAKASH N,YANG C H.Non-destructive evaluations of 3D printed ceramic teeth:Young's modulus and defect detections[J].Ceramics International,2020,46(14):22987-22998.
 
【59】ZHANG K Q,MENG Q Y,CAI N J,et al.Effects of solid loading on stereolithographic additive manufactured ZrO2 ceramic:A quantitative defect study by X-ray computed tomography[J].Ceramics International,2021,47(17):24353-24359.
 
【60】QIAN L H,CUI X N,LIU S A,et al.Image-based numerical simulation of the local cyclic deformation behavior around cast pore in steel[J].Materials Science and Engineering:A,2016,678:347-354.
 
相关信息
   标题 相关频次
 蜂窝夹层结构钎接部位的缺陷种类与显微组织
 3
 客运索道钢丝绳电磁检测的缺陷定性和定量
 3
 温度对超声波检测缺陷定位定量的影响
 3
 30CrMnSiA钢螺栓断裂原因
 2
 48mm的35MnBM棒材自动超声检测方法应用
 2
 DP780高强钢电阻焊接头维氏硬度测量不确定度评定
 2
 Mg-4%Al-0.8%Sb-xRE镁合金的显微组织和力学性能
 2
 Ti6Al4V合金双辉渗钼扩散系数的数值分析
 2
 TiAl合金表面NiCrAlY涂层的抗高温氧化性能
 2
 γ-TiAl合金表面粉末包埋渗铝改性层的组织与高温抗氧化性能
 2
 γ-TiAl合金表面双层辉光等离子铬钨共渗层的高温氧化行为
 2
 奥氏体不锈钢中径管焊缝超声爬波探伤
 2
 爆炸成型法制备碳化钽陶瓷
 2
 大型风洞承压壳体声发射评价的试验研究
 2
 单轴拉伸下中锰钢组织演变和力学行为的数值模拟
 2
 多元热流体对油气采输管线的腐蚀
 2
 非均匀化处理铸造铝合金透射电镜样品制备方法
 2
 非均匀结构件材料密度工业CT定量检测方法
 2
 富氧气氛烧结对SnO2压敏电阻微观结构与电学性能的影响
 2
 钢管混凝土缺陷定量的超声波检测方法
 2
 钢管混凝土质量的无损检测
 2
 钢结构焊缝超声波探伤缺陷当量孔径的计算
 2
 钢质管道三层PE防护涂层常见缺陷分析
 2
 高强度螺栓断裂原因分析
 2
 高效液相色谱法测定人血浆中的维生素D3及25-OH-D3
 2
 工业CT检测中主要工艺参数定量取值方法
 2
 固溶升温速率对Al-10.78Zn-2.78Mg-2.59Cu铝合金组织与性能的影响
 2
 海底腐蚀管道极限承载力预测模型
 2
 核电站蒸汽发生器传热管胀管过渡段沉积物及缺陷的涡流探头判别
 2
 机加工对陶瓷性能的影响机理及可加工陶瓷材料
 2