扫一扫 加微信
首页 > 期刊论文 > 论文摘要
梯度多孔Ti-15Mo合金材料的制备与压缩变形行为
          
Fabrication and Compressive Deformation Behavior of Gradient Porous Ti-15Mo Alloy Material

摘    要
使用激光选区熔化技术分别制备具有支杆晶胞(BCC、Kelvin晶胞)和三重周期最小曲面(TPMS)晶胞(Primitive、Gyroid、Diamond晶胞)的多孔Ti-15Mo合金试样,孔隙率分别为均匀分布(均匀试样),沿成形方向递增(垂直梯度试样)和垂直于成形方向递增(横向梯度试样),研究了其压缩变形行为。结果表明:多孔试样的倾斜支杆或曲面会黏结更多粉末,成形质量相对较差;垂直梯度试样的变形机制为由顶部到底部的逐层变形,横向梯度试样的变形机制为先整体均匀变形,随后局部发生显著变形,并且变形向均匀变形区扩展;TPMS晶胞试样的压缩性能和能量吸收能力整体上高于支杆晶胞试样;Diamond晶胞试样的综合性能最优,其横向梯度试样的弹性模量、屈服强度、平台应力、累积能量吸收值分别为4.088 GPa、134.5 MPa、175.4 MPa、117.92 MJ·m-3,垂直梯度试样的分别为3.761 GPa、104.8 MPa、165.2 MPa、92.19 MJ·m-3
标    签 激光选区熔化   梯度多孔材料   能量吸收   压缩性能   Ti-15Mo合金   selective laser melting   gradient porous material   energy absorption   compression property   Ti-15Mo alloy  
 
Abstract
Porous Ti-15Mo alloy specimens with support cells (BCC, Kelvin cells) and triple periodic minimum surface (TPMS) cells (Primitive, Gyroid ,Diamond cells) were prepared by laser selective melting. The porosity was evenly distributed (uniform specimen), increasing along the forming direction (vertical gradient specimen), increasing perpendicular to the forming direction (lateral gradient specimen). The compressive deformation behavior of the alloy was studied. The results show that the inclined support or surface of the porous sample would bond more powder, and the forming quality was relatively poor. The deformation mechanism of vertical gradient specimens was layer by layer from the top to the bottom, and the deformation mechanism of lateral gradient specimens was the whole uniform deformation first, and then the local significant deformation occurred and extended to the uniform deformation region. The compressive properties and energy absorption capacity of TPMS cell specimens were higher than those of the support cell specimens. The Diamond cell specimen had the best comprehensive properties. The elastic modulus, yield strength, platform stress and cumulative energy absorption values of lateral gradient specimen were respectively 4.088 GPa, 134.5 MPa, 175.4 MPa, 117.92 MJ·m-3, and those of vertical gradient specimen were respectively 3.761 GPa, 104.8 MPa, 165.2 MPa, 92.19 MJ·m-3.

中图分类号 TG115.5   DOI 10.11973/jxgccl202310003

 
  中国光学期刊网论文下载说明


所属栏目 试验研究

基金项目 国家自然科学基金资助项目(51975061)

收稿日期 2022/5/3

修改稿日期 2023/5/23

网络出版日期

作者单位点击查看

备注王元晶(1995-),男,江西吉安人,硕士研究生

引用该论文: WANG Yuanjing,CHEN Jian,ZHOU Libo,LI Chaoying,LIAO Xingyu. Fabrication and Compressive Deformation Behavior of Gradient Porous Ti-15Mo Alloy Material[J]. Materials for mechancial engineering, 2023, 47(10): 16~25
王元晶,陈荐,周立波,李超颖,廖兴宇. 梯度多孔Ti-15Mo合金材料的制备与压缩变形行为[J]. 机械工程材料, 2023, 47(10): 16~25


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】ATTAR H,EHTEMAM-HAGHIGHI S,SORO N,et al.Additive manufacturing of low-cost porous titanium-based composites for biomedical applications:Advantages,challenges and opinion for future development[J].Journal of Alloys and Compounds,2020,827:154263.
 
【2】ZHANG L C,CHEN L Y.A review on biomedical titanium alloys:Recent progress and prospect[J].Advanced Engineering Materials,2019,21(4):1801215.
 
【3】ZHAO X F,NIINOMI M,NAKAI M,et al.Beta type Ti-Mo alloys with changeable Young's modulus for spinal fixation applications[J].Acta Biomaterialia,2012,8(5):1990-1997.
 
【4】CHEN J A,LIAO X Y,SHU J G,et al.Microstructure tailoring of Ti-15Mo alloy fabricated by selective laser melting with high strength and ductility[J].Materials Science and Engineering:A,2021,826:141962.
 
【5】DAVIS J R.Handbook of materials for medical devices[J].Corrosion:The Journal of Science and Engineering,2005,61(8):832-832.
 
【6】HO W F.A comparison of tensile properties and corrosion behavior of cast Ti-7.5Mo with c.p.Ti,Ti-15Mo and Ti-6Al-4V alloys[J].Journal of Alloys and Compounds,2008,464(1/2):580-583.
 
【7】LEONG K F,CHUA C K,SUDARMADJI N,et al.Engineering functionally graded tissue engineering scaffolds[J].Journal of the Mechanical Behavior of Biomedical Materials,2008,1(2):140-152.
 
【8】KUMAR A,NUNE K C,MURR L E,et al.Biocompatibility and mechanical behaviour of three-dimensional scaffolds for biomedical devices:Process-structure-property paradigm[J].International Materials Reviews,2016,61(1):20-45.
 
【9】BENEDETTI M,DU PLESSIS A,RITCHIE R O,et al.Architected cellular materials:A review on their mechanical properties towards fatigue-tolerant design and fabrication[J].Materials Science and Engineering:R:Reports,2021,144:100606.
 
【10】AL-KETAN O,ROWSHAN R,AL-RUB R K A.Topology-mechanical property relationship of 3D printed strut,skeletal,and sheet based periodic metallic cellular materials[J].Additive Manufacturing,2018,19:167-183.
 
【11】KAS M,YILMAZ O.Radially graded porous structure design for laser powder bed fusion additive manufacturing of Ti-6Al-4V alloy[J].Journal of Materials Processing Technology,2021,296:117186.
 
【12】ZHANG L,FEIH S,DAYNES S,et al.Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading[J].Additive Manufacturing,2018,23:505-515.
 
【13】BOBBERT F S L,LIETAERT K,EFTEKHARI A A,et al.Additively manufactured metallic porous biomaterials based on minimal surfaces:A unique combination of topological,mechanical,and mass transport properties[J].Acta Biomaterialia,2017,53:572-584.
 
【14】GIBSON L J,ASHBY M F.Cellular solids:Structure and properties[M].2nd ed.Cambridge:Cambridge University Press,1997.
 
【15】ALSALLA H,HAO L A,SMITH C.Fracture toughness and tensile strength of 316L stainless steel cellular lattice structures manufactured using the selective laser melting technique[J].Materials Science and Engineering:A,2016,669:1-6.
 
【16】ATAEE A,LI Y C,BRANDT M,et al.Ultrahigh-strength titanium gyroid scaffolds manufactured by selective laser melting (SLM) for bone implant applications[J].Acta Materialia,2018,158:354-368.
 
【17】BAGHERI Z S,MELANCON D,LIU L,et al.Compensation strategy to reduce geometry and mechanics mismatches in porous biomaterials built with selective laser melting[J].Journal of the Mechanical Behavior of Biomedical Materials,2017,70:17-27.
 
【18】ARABNEJAD S,BURNETT JOHNSTON R,PURA J A,et al.High-strength porous biomaterials for bone replacement:A strategy to assess the interplay between cell morphology,mechanical properties,bone ingrowth and manufacturing constraints[J].Acta Biomaterialia,2016,30:345-356.
 
【19】KADKHODAPOUR J,MONTAZERIAN H,DARABI A C,et al.Failure mechanisms of additively manufactured porous biomaterials:Effects of porosity and type of unit cell[J].Journal of the Mechanical Behavior of Biomedical Materials,2015,50:180-191.
 
【20】GAO H R,JIN X A,YANG J Z,et al.Porous structure and compressive failure mechanism of additively manufactured cubic-lattice tantalum scaffolds[J].Materials Today Advances,2021,12:100183.
 
【21】MASKERY I,ABOULKHAIR N T,AREMU A O,et al.A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting[J].Materials Science and Engineering:A,2016,670:264-274.
 
【22】AL-KETAN O,REZGUI R,ROWSHAN R,et al.Microarchitected stretching-dominated mechanical metamaterials with minimal surface topologies[J].Advanced Engineering Materials,2018,20(9):1800029.
 
【23】ZHAO M A,ZHANG D Z,LIU F,et al.Mechanical and energy absorption characteristics of additively manufactured functionally graded sheet lattice structures with minimal surfaces[J].International Journal of Mechanical Sciences,2020,167:105262.
 
【24】NOVAK N,AL-KETAN O,KRSTULOVI AC'G -OPARA L,et al.Quasi-static and dynamic compressive behaviour of sheet TPMS cellular structures[J].Composite Structures,2021,266:113801.
 
【25】BAI L,GONG C,CHEN X H,et al.Mechanical properties and energy absorption capabilities of functionally graded lattice structures:Experiments and simulations[J].International Journal of Mechanical Sciences,2020,182:105735.
 
【26】YU S X,SUN J X,BAI J M.Investigation of functionally graded TPMS structures fabricated by additive manufacturing[J].Materials & Design,2019,182:108021.
 
【27】GVMRVK R,MINES R A W,KARADENIZ S.Static mechanical behaviours of stainless steel micro-lattice structures under different loading conditions[J].Materials Science and Engineering:A,2013,586:392-406.
 
【28】RUIZ DE GALARRETA S,DOYLE R J,JEFFERS J,et al.Laser powder bed fusion of porous graded structures:A comparison between computational and experimental analysis[J].Journal of the Mechanical Behavior of Biomedical Materials,2021,123:104784.
 
【29】ZHAO S,LI S J,WANG S G,et al.Compressive and fatigue behavior of functionally graded Ti-6Al-4V meshes fabricated by electron beam melting[J].Acta Materialia,2018,150:1-15.
 
【30】YANG L,MERTENS R,FERRUCCI M,et al.Continuous graded Gyroid cellular structures fabricated by selective laser melting:Design,manufacturing and mechanical properties[J].Materials & Design,2019,162:394-404.
 
【31】AL-KETAN O,LEE D W,ROWSHAN R,et al.Functionally graded and multi-morphology sheet TPMS lattices:Design,manufacturing,and mechanical properties[J].Journal of the Mechanical Behavior of Biomedical Materials,2020,102:103520.
 
【32】HAO M Z,WEI C J,LIU X,et al.Quantitative evaluation on mechanical characterization of Ti6Al4V porous scaffold designed based on Weaire-Phelan structure via experimental and numerical analysis methods[J].Journal of Alloys and Compounds,2021,885:160234.
 
【33】SUCHANEK W,YOSHIMURA M.Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants[J].Journal of Materials Research,1998,13(1):94-117.
 
【34】MCGREGOR M,PATEL S,MCLACHLIN S,et al.Architectural bone parameters and the relationship to titanium lattice design for powder bed fusion additive manufacturing[J].Additive Manufacturing,2021,47:102273.
 
【35】YUAN L,DING S L,WEN C E.Additive manufacturing technology for porous metal implant applications and triple minimal surface structures:A review[J].Bioactive Materials,2019,4:56-70.
 
【36】LIU Y J,ZHANG J S,LIU X C,et al.Non-layer-wise fracture and deformation mechanism in beta titanium cubic lattice structure manufactured by selective laser melting[J].Materials Science and Engineering:A,2021,822:141696.
 
【37】ONAL E,FRITH J,JURG M,et al.Mechanical properties and in vitro behavior of additively manufactured and functionally graded Ti6Al4V porous scaffolds[J].Metals,2018,8(4):200-200.
 
【38】KELLY C N,FRANCOVICH J,JULMI S,et al.Fatigue behavior of as-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering[J].Acta Biomaterialia,2019,94:610-626.
 
相关信息
   标题 相关频次
 选区激光熔化成形不同孔隙结构Ti-15Mo多孔合金的压缩特性
 7
 不同工艺高温固溶与时效处理后SP-700钛合金的组织与性能
 6
 泡沫Al-0.16Sc合金等温时效后的压缩及能量吸收性能
 3
 熔融碳酸盐燃料电池阳极用多孔铜镍铝合金的制备及其压缩性能
 3
 304不锈钢表面磁控溅射制备Cr-C涂层的组织与耐高温电化学腐蚀性能
 2
 Ti-10V-2Cr-3Al钛合金的高温压缩变形行为及本构关系
 2
 Ti-6Al-4V合金激光选区熔化材料的射线检测
 2
 δ相对激光选区熔化成形GH4169合金持久性能的影响
 2
 传统工艺和激光选区熔化技术制备的Inconel 718合金在650 ℃下表面氧化膜的形成机理
 2
 放电等离子烧结温度对Ti-45Al-6Nb-0.3W合金显微组织和力学性能的影响
 2
 工业CT技术在激光选区熔化增材制造中的应用
 2
 工艺参数对激光选区熔化成形TA32钛合金成形质量及硬度的影响
 2
 工艺参数对激光选区熔化成形Ti6Al4V合金致密性的影响
 2
 后处理工艺对激光选区熔化成形Hastelloy-X合金显微组织和低周疲劳性能的影响
 2
 基于免疫算法的316L不锈钢高温低周疲劳寿命预测
 2
 激光体能量密度对激光选区熔化成形TC4钛合金致密化行为的影响
 2
 激光选区熔化Hastelloy-X合金的显微组织与拉伸性能
 2
 激光选区熔化成形316L不锈钢断裂性能的有限元模拟与试验验证
 2
 激光选区熔化成形Al-Si合金高周疲劳性能的研究进展
 2
 激光选区熔化成形GH4169合金的超高周疲劳性能
 2
 激光选区熔化成形TC4钛合金显微组织与性能的研究进展
 2
 激光选区熔化成形铝合金的组织、性能与倾斜面成形质量
 2
 激光选区熔化增材制造Ti-6Al-4V钛合金的超声检测
 2
 激光选区熔化制备超薄铝合金板的可行性及力学性能
 2
 激光选区熔化制备负泊松比椭圆多孔AlSi10Mg合金性能的数值模拟
 2
 聚酰亚胺树脂/立方氮化硼砂轮的制备及其磨削性能
 2
 开孔泡沫铜的压-压疲劳行为
 2
 颗粒粒径对喷射沉积制备SiC颗粒增强铝硅合金复合材料显微组织及拉伸性能的影响
 2
 快速凝固制备铸态B2型Zr-Co-Al合金的微观结构和力学性能
 2
 轻质蜂窝结构压缩性能的测试
 2