扫一扫 加微信
首页 > 期刊论文 > 论文摘要
相场法模拟增材制造及焊接过程中显微组织的研究进展
          
Research Progress on Microstructure Simulation by Phase Field Method in Additive Manufacturing and Welding Process

摘    要
增材制造以及焊接过程都是多物理场耦合的复杂过程,难以采用试验方法直接观测熔池显微组织的演变过程。随着计算材料学和数值模型的快速发展,从数值模拟出发研究凝固过程中的显微组织演变成为可能。对比分析了几类常用的显微组织模拟方法,其中相场法在晶粒形貌模拟准确性上具有独特的优势。综述了相场法在增材制造及焊接领域模拟显微组织的应用现状,并对未来的研究方向进行了展望。
标    签 增材制造   焊接   相场法   显微组织   additive manufacturing   welding   phase field method   microstructure  
 
Abstract
The processes of additive manufacturing and welding are both complex processes with multiple physical field coupling, and it is difficult to directly observe the evolution of the microstructure of the molten pool by experimental methods. With the rapid development of computational material science and numerical models, it is possible to study the microstructure evolution during solidification by numerical simulation. Several commonly used microstructure simulation methods are compared and analyzed, among which the phase field method has a unique advantage in the accuracy of grain morphology simulation. The application status of phase field method in the microstructure simulation in additive manufacturing and welding fields is reviewed, and the research direction in future is prospected.

中图分类号 TG111.5   DOI 10.11973/jxgccl202311014

 
  中国光学期刊网论文下载说明


所属栏目 专题报道(增材制造)

基金项目 苏州市科技计划项目(SYC2022143);国家重点研发计划项目(2016YFB1100300)

收稿日期 2023/2/19

修改稿日期 2023/10/7

网络出版日期

作者单位点击查看

备注王丽芳(1979-),女,陕西渭南人,实验师,硕士

引用该论文: WANG Lifang,XIE Guangyao,ZHU Gangxian. Research Progress on Microstructure Simulation by Phase Field Method in Additive Manufacturing and Welding Process[J]. Materials for mechancial engineering, 2023, 47(11): 81~86
王丽芳,谢光耀,朱刚贤. 相场法模拟增材制造及焊接过程中显微组织的研究进展[J]. 机械工程材料, 2023, 47(11): 81~86


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】朱忠良,赵凯,郭立杰,等.大型金属构件增材制造技术在航空航天制造中的应用及其发展趋势[J].电焊机,2020,50(1):1-14. ZHU Z L,ZHAO K,GUO L J,et al.Application and development trend of additive manufacturing technology of large-scale metal component in aerospace manufacturing[J].Electric Welding Machine,2020,50(1):1-14.
 
【2】TEPYLO N,HUANG X A,PATNAIK P C.Laser-based additive manufacturing technologies for aerospace applications[J].Advanced Engineering Materials,2019,21(11):1900617.
 
【3】肖文甲.激光增材制造镍基高温合金枝晶生长的机理研究[D].长沙:湖南大学,2019. XIAO W J.Study on dendritic growth mechanism of nickel-based superalloy made by laser additive[D].Changsha:Hunan University,2019.
 
【4】WANG C Y,BECKERMANN C.Prediction of columnar to equiaxed transition during diffusion-controlled dendritic alloy solidification[J].Metallurgical and Materials Transactions A,1994,25(5):1081-1093.
 
【5】刘芸.铝锂合金激光焊接熔池凝固过程微观组织建模与仿真研究[D].南京:南京航空航天大学,2018. LIU Y.Modeling and simulation of microstructure in solidification process of Al-Li alloy laser welding pool[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2018.
 
【6】黄超.基于CA-FE法TIG焊下TC4合金焊缝微观组织数值分析[D].西安:西安理工大学,2020. HUANG C.Numerical analysis of microstructure of TC4 alloy weld under TIG welding based on CA-FE method[D].Xi'an:Xi'an University of Technology,2020.
 
【7】陈满骄.铝/钢异种金属焊接接头界面形成机理研究[D].兰州:兰州理工大学,2016. CHEN M J.Study on interface formation mechanism of aluminum/steel dissimilar metal welded joints[D].Lanzhou:Lanzhou University of Technology,2016.
 
【8】任博.Stellite 6合金焊接熔池凝固行为的相场模拟[D].上海:上海交通大学,2020. REN B.Phase field simulation of solidification behavior of welding pool of Stellite 6 alloy[D].Shanghai:Shanghai Jiao Tong University,2020.
 
【9】HOHENBERG P C,HALPERIN B I.Theory of dynamic critical phenomena[J].Reviews of Modern Physics,1977,49(3):435-479.
 
【10】COLLINS J B,LEVINE H.Diffuse interface model of diffusion-limited crystal growth[J].Physical Review B,1985,31(9):6119-6122.
 
【11】CAGINALP G,FIFE P C.Dynamics of layered interfaces arising from phase boundaries[J].SIAM Journal on Applied Mathematics,1988,48(3):506-518.
 
【12】FIFE P C,GILL G S.The phase-field description of mushy zones[J].Physica D:Nonlinear Phenomena,1989,35(1/2):267-275.
 
【13】KOBAYASHI R.Modeling and numerical simulations of dendritic crystal growth[J].Physica D:Nonlinear Phenomena,1993,63(3/4):410-423.
 
【14】WHEELER A A,BOETTINGER W J,MCFADDEN G B.Phase-field model for isothermal phase transitions in binary alloys[J].Physical Review A,1992,45(10):7424-7439.
 
【15】KIM S G,KIM W T,SUZUKI T. Phase-field model for binary alloys[J].Physical Review E,1999,60(6):7186-7197.
 
【16】张玉妥,李殿中,李依依,等.用相场方法模拟纯物质等轴枝晶生长[J].金属学报,2000,36(6):589-591. ZHANG Y T,LI D Z,LI Y Y,et al.Simulation of equiaxed dendritic growth of a pure material using phase field method[J].Acta Metallrugica Sinica,2000,36(6):589-591.
 
【17】于艳梅,杨根仓,赵达文,等.过冷熔体中枝晶生长的相场法数值模拟[J].物理学报,2001,50(12):2423-2428. YU Y M,YANG G C,ZHAO D W,et al.Numerical simulation of dendritic growth in undercooled melt using phase-field approach[J].Acta Physica Sinica,2001,50(12):2423-2428.
 
【18】朱昌盛,王智平,荆涛,等.二元合金非等温凝固相场法模拟[J].稀有金属材料与工程,2005,34(10):1565-1568. ZHU C S,WANG Z P,JING T,et al.Phase-field simulation of non-isothermal dendritic growth of binary alloy[J].Rare Metal Materials and Engineering,2005,34(10):1565-1568.
 
【19】ECHEBARRIA B,FOLCH R,KARMA A,et al.Quantitative phase-field model of alloy solidification[J].Physical Review E,2004,70(6):061604.
 
【20】KUNDIN J,RAMAZANI A,PRAHL U,et al.Microstructure evolution of binary and multicomponent manganese steels during selective laser melting:Phase-field modeling and experimental validation[J].Metallurgical and Materials Transactions A,2019,50(4):2022-2040.
 
【21】XIAO W J,LI S M,WANG C S,et al.Multi-scale simulation of dendrite growth for direct energy deposition of nickel-based superalloys[J].Materials & Design,2019,164:107553.
 
【22】GENG R W,DU J,WEI Z Y,et al.An adaptive-domain-growth method for phase field simulation of dendrite growth in arc preheated fused-coating additive manufacturing[J].Journal of Physics:Conference Series,2018,1063:012077.
 
【23】WU L M,ZHANG J.Phase field simulation of dendritic solidification of Ti-6Al-4V during additive manufacturing process[J].JOM,2018,70(10):2392-2399.
 
【24】WANG X,LIU P W,JI Y,et al.Investigation on microsegregation of IN718 alloy during additive manufacturing via integrated phase-field and finite-element modeling[J].Journal of Materials Engineering and Performance,2019,28(2):657-665.
 
【25】GENG R W,DU J,WEI Z Y,et al.Multiscale modeling of microstructural evolution in fused-coating additive manufacturing[J].Journal of Materials Engineering and Performance,2019,28(10):6544-6553.
 
【26】ZHANG Y,JUNG Y G,ZHANG J.Phase field modeling of microstructure evolution in selective laser melting-manufactured titanium alloy[M]//Multiscale Modeling of Additively Manufactured Metals.Amsterdam:Elsevier,2020:141-154.
 
【27】CHU S,GUO C W,ZHANG T X,et al.Phase-field simulation of microstructure evolution in electron beam additive manufacturing[J].The European Physical Journal E,2020,43(6):35.
 
【28】GENG S N,JIANG P,SHAO X Y,et al.Effects of back-diffusion on solidification cracking susceptibility of Al-Mg alloys during welding:A phase-field study[J].Acta Materialia,2018,160:85-96.
 
【29】YU F Y,JI Y Z,WEI Y H,et al.Effect of the misorientation angle and anisotropy strength on the initial planar instability dynamics during solidification in a molten pool[J].International Journal of Heat and Mass Transfer,2019,130:204-214.
 
【30】XIONG L D,WANG C M,WANG Z M,et al.The interaction between grains during columnar-to-equiaxed transition in laser welding:A phase-field study[J].Metals,2020,10(12):1647.
 
【31】GENG S N,JIANG P,GUO L Y,et al.Multi-scale simulation of grain/sub-grain structure evolution during solidification in laser welding of aluminum alloys[J].International Journal of Heat and Mass Transfer,2020,149:119252.
 
【32】XIONG L D,ZHU G L,MI G Y,et al.A phase-field simulation of columnar-to-equiaxed transition in the entire laser welding molten pool[J].Journal of Alloys and Compounds,2021,858:157669.
 
【33】BAILEY N S,HONG K M,SHIN Y C.Comparative assessment of dendrite growth and microstructure predictions during laser welding of Al6061 via 2D and 3D phase field models[J].Computational Materials Science,2020,172:109291.
 
【34】TAKAKI T,ROJAS R,SAKANE S,et al.Phase-field-lattice Boltzmann studies for dendritic growth with natural convection[J].Journal of Crystal Growth,2017,474:146-153.
 
相关信息
   标题 相关频次
 NM450耐磨钢板焊接接头的显微组织和力学性能
 4
 SAF2205双相不锈钢与16MnR钢焊接接头的组织与性能
 4
 固溶和时效处理对选区激光熔化成形GTD222镍基合金组织和硬度的影响
 4
 焊接工艺对S32205双相不锈钢组织和性能的影响
 4
 激光选区熔化成形TC4钛合金显微组织与性能的研究进展
 4
 冷金属过渡加脉冲电弧增材制造4043铝合金薄壁件的组织与拉伸性能
 4
 增材制造不锈钢的组织和性能
 4
 化学成分及金相组织对纯钛自腐蚀电位的影响
 3
 冷金属过渡电弧增材制造H13钢块体的显微组织与力学性能
 3
 06Cr19Ni10不锈钢/A283低碳钢扩散焊接接头的显微组织和力学性能
 2
 06Cr20Ni11钢埋弧焊焊缝的显微组织和性能
 2
 1000-3738(2007)02-0009-04
 2
 102钢的显微组织形态与室温力学性能的关系
 2
 10Ni5CrMoV钢MAG焊接接头的显微组织与力学性能
 2
 12Cr13钢预热处理工艺参数优化
 2
 12Cr1MoV钢管在长时服役后组织及拉伸性能的退化
 2
 12Cr1MoV钢过热器爆管的显微组织和力学性能
 2
 13MnNiMoNbR与00Cr19Ni10异种钢焊接接头的组织与性能
 2
 15 mm厚度TC4合金增材制造制件的射线照相检测
 2
 15CrMo钢和12Cr1MoV钢的快速金相制样方法
 2
 16MND5/309L/308L/Z2CND18-12N异种金属焊接件的组织和性能
 2
 16Mn钢链板断裂分析
 2
 16Mo3钢大直径大变形量试制中频弯管的组织与性能
 2
 1Cr17不锈钢表面TIG冷焊重熔和丝材熔敷工艺及改性层的组织和性能
 2
 1Cr18Ni9Ti不锈钢脉冲超窄间隙焊接头的组织及耐腐蚀性能
 2
 2024铝合金电子束焊接接头的显微组织与力学性能
 2
 20Cr1Mo1VTiB钢的连续冷却转变行为
 2
 20CrMnTi齿轮钢棒材控轧控冷工艺的优化
 2
 20MnCr5钢齿轮表面渗碳层的显微组织
 2
 220 kV断路器用弹簧异常开裂失效分析
 2