扫一扫 加微信
首页 > 期刊论文 > 论文摘要
内蒙古风电基础钢筋混凝土在氯盐环境中的寿命预测
          
Life Prediction of Reinforced Concrete of Wind Power Foundation in Inner Mongolia Chloride Environment

摘    要
针对内蒙古通辽地区的氯盐环境,基于修正菲克第二定律和电化学腐蚀规律,开展混凝土内部氯盐输运及钢筋锈蚀模拟,利用多物理场耦合软件Comsol Muhiphysic建立风电机组基础钢筋锈蚀开裂模型,对该地区风电机组钢筋混凝土的寿命进行预测。结果表明:当混凝土表面的氯盐含量由1.8%下降到1.2%时,保护层开裂时间由27 a推迟到31 a;通辽地区风电机组基础表面的保护层厚度为42 mm,其裂缝宽度达到允许的最大值需要27 a,考虑到四季气候影响,实际需要34 a;保护层厚度每增加3 mm,开裂时间推迟约1.2 a。
标    签 风电基础   钢筋混凝土   氯盐环境   钢筋锈蚀   开裂   wind power foundation   reinforced concrete   chloride environment   steel bar corrosion   cracking  
 
Abstract
According to the chloride environment in Tongliao, Inner Mongolia, based on the modified Fick's second rules and electrochemical corrosion rules, the simulation of chloride transport and steel corrosion in concrete was carried out. The multi-physics coupling software Comsol Muhiphysic was used to establish the corrosion and cracking model of the wind turbine foundation steel bar, and to predict the structural life of reinforced concrete of wind turbine in this area. The results showed that when the chloride concentration on the concrete surface decreased from 1.8% to 1.2%, and the cracking time of protective layer was delayed from 27 years to 31 years. The thickness of protective layer on surface of wind turbine foundation in Tongliao area was 42 mm, and it took 27 years for the crack width to reach the allowable maximum value. Taking into account the climate in the four seasons,it took 34 years. For every 3 mm increased in the thickness of protective layer, the cracking time was delayed by about 1.2 years.

中图分类号 TG174   DOI 10.11973/fsyfh-202312012

 
  中国光学期刊网论文下载说明


所属栏目 应用技术

基金项目 国家电投集团科技项目(2021-359-MDN-KJ-X)

收稿日期 2021/11/17

修改稿日期

网络出版日期

作者单位点击查看


引用该论文: ZHAO Zhenning,XU Yunlong,ZHOU Changjun,HE Yanwei,XIAO Jianguo,WU Jiarun. Life Prediction of Reinforced Concrete of Wind Power Foundation in Inner Mongolia Chloride Environment[J]. Corrosion & Protection, 2023, 44(12): 79


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】DU Y G, CLARK L A, CHAN A H C. Residual capacity of corroded reinforcing bars[J]. Magazine of Concrete Research, 2005, 57(3):135-147.
 
【2】张伟平, 顾祥林, 金贤玉, 等. 混凝土中钢筋锈蚀机理及锈蚀钢筋力学性能研究[J]. 建筑结构学报, 2010, 31(S1):327-332.
 
【3】袁迎曙, 贾福萍, 蔡跃. 锈蚀钢筋混凝土梁的结构性能退化模型[J]. 土木工程学报, 2001, 34(3):47-52, 96.
 
【4】王民浩, 陈观福. 我国风力发电机组地基基础设计[J]. 水力发电, 2008, 34(11):88-91.
 
【5】赛佳美, 卢玉东, 王正川, 等. 内蒙古腰坝绿洲的土壤盐渍化特征[J]. 水土保持通报, 2017, 37(5):152-156.
 
【6】程红霞. 通辽市土壤资源与利用现状浅析[J]. 内蒙古农业科技, 2008, 36(5):86, 105.
 
【7】BERKE N S, HICKS M C. Predicting chloride profiles in concrete[J]. Corrosion, 1994, 50(3):234-239.
 
【8】MARTÍN-PÉREZ B, PANTAZOPOULOU S J, THOMAS M D A. Numerical solution of mass transport equations in concrete structures[J]. Computers & Structures, 2001, 79(13):1251-1264.
 
【9】HOSEINI M, BINDIGANAVILE V, BANTHIA N. The effect of mechanical stress on permeability of concrete:a review[J]. Cement and Concrete Composites, 2009, 31(4):213-220.
 
【10】余红发. 盐湖地区高性能混凝土的耐久性、机理与使用寿命预测方法[D]. 南京:东南大学, 2004.
 
【11】乔宏霞, 乔国斌, 路承功. 混凝土中氯离子传输模拟及速率分析[J]. 华中科技大学学报(自然科学版), 2022, 50(2):19-25.
 
【12】LUPING T, NILSSON L O. Rapid determination of the chloride diffusivity in concrete by applying an electric field[J]. ACI Materials Journal, 1993, 89(1):49-53.
 
【13】金伟良, 赵羽习. 混凝土结构耐久性[M]. 2版.北京:科学出版社, 2014.
 
【14】张誉. 混凝土结构耐久性概论[M]. 上海:上海科学技术出版社, 2003.
 
【15】房久鑫. 氯盐环境下混凝土内部钢筋的腐蚀机理和模拟研究[D]. 杭州:浙江大学, 2017.
 
【16】HUSSAIN R R, ISHIDA T. Enhanced electro-chemical corrosion model for reinforced concrete under severe coupled action of chloride and temperature[J]. Construction and Building Materials, 2011, 25(3):1305-1315.
 
【17】KRANC S C, SAGVÉS A A. Detailed modeling of corrosion macrocells on steel reinforcing in concrete[J]. Corrosion Science, 2001, 43(7):1355-1372.
 
【18】GE J, ISGOR O B. Effects of Tafel slope, exchange current density and electrode potential on the corrosion of steel in concrete[J]. Materials and Corrosion, 2007, 58(8):573-582.
 
【19】GHODS P, BURKAN ISGOR O, POUR-GHAZ M. Experimental verification and application of a practical corrosion model for uniformly depassivated steel in concrete[J]. Materials and Structures, 2008, 41(7):1211-1223.
 
【20】POUR-GHAZ M, ISGOR O B, GHODS P. The effect of temperature on the corrosion of steel in concrete.Part 1:simulated polarization resistance tests and model development[J]. Corrosion Science, 2009, 51(2):415-425.
 
【21】施锦杰, 孙伟. 混凝土中钢筋腐蚀速率模型研究进展[J]. 硅酸盐学报, 2012, 40(4):620-630.
 
【22】HUSSAIN R R. Enhanced classical tafel diagram model for corrosion of steel in chloride contaminated concrete and the experimental non-linear effect of temperature[J]. International Journal of Concrete Structures and Materials, 2010, 4(2):71-75.
 
【23】SUDA K, MISRA S, MOTOHASHI K. Corrosion products of reinforcing bars embedded in concrete[J]. Corrosion Science, 1993, 35(5/6/7/8):1543-1549.
 
相关信息
   标题 相关频次
 0Cr13铁素体不锈钢丝在模压过程中开裂的原因
 2
 12Cr2Ni4A钢球面垫圈开裂原因
 2
 18CrNiMo7-6钢齿轮轴开裂失效分析
 2
 20CrMnTi齿轮钢铸坯缺陷引起的开裂分析
 2
 20G无缝钢管开裂原因
 2
 20钢等径无缝三通开裂原因
 2
 2A14铝合金容器罐开裂原因分析
 2
 2Cr13钢汽轮机叶片的开裂原因分析
 2
 300 MW机组回转式空气预热器仓格板开裂原因分析
 2
 303Se不锈钢高锁螺母开裂原因
 2
 304奥氏体不锈钢管T型焊接处渗漏原因
 2
 304奥氏体不锈钢管焊接接头开裂原因
 2
 304不锈钢弯头开裂失效分析
 2
 35MnBH钢链轨节开裂原因
 2
 37Mn钢气瓶开裂原因分析
 2
 45钢模托开裂分析
 2
 45圆钢冷拔加工开裂原因分析
 2
 4Cr5MoSiV1钢模块锻造开裂原因
 2
 500kV变电站5052电流互感器放电烧蚀故障原因
 2
 65Mn钢弹簧垫圈开裂原因分析
 2
 7A04模锻螺母开裂原因分析
 2
 8407钢汽车模型模具开裂原因分析
 2
 9Cr2Mo钢转向辊调质开裂原因分析
 2
 C70S6钢连杆疲劳试验过早开裂原因分析
 2
 CuZn39Pb3铅黄铜接头螺纹处开裂失效分析
 2
 EC-1清洗剂对某微矩形电连接器壳体的影响
 2
 GCr15钢轴承套圈内表面开裂原因
 2
 GH2036螺母开裂原因分析
 2
 H13钢外套早期开裂分析
 2
 H68黄铜弹壳开裂原因分析
 2