搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
锂离子电池负极用硅/碳纳米复合材料制备方法和性能的研究进展
          
Research Development of Preparation Methods and Properties of Si/C Nanocomposites Used for Cathode of Lithium-Ion Battery

摘    要
介绍了近十年来锂离子电池负极用硅/碳纳米复合材料的主要制备方法, 包括热解法、化学气相沉积法、球磨法、水热法以及溶胶凝胶法等, 以及硅/碳复合材料的微结构特征及其对复合材料比容量和循环性能的影响。最后, 对硅/碳纳米复合材料的研究方向进行了展望。
标    签 锂离子电池   硅/碳复合材料   负极   可逆比容量   lithium ion battery   Si/C nanocomposite   cathode   reversible specific capacity  
 
Abstract
The main preparation methods for Si/C nanocomposites used for cathode of lithium-ion battery in the last decade were introduced, including pyrolysis, chemical vapor deposition, milling, hydrothermal, gel method and so on. The microstructure characteristics of Si/C composite and their effects on specific capacity and cycling performance of composite were introduced, too. At last, the prospects of study direction of Si/C nanocomposites were showed.

中图分类号 TM912.6

 
  中国光学期刊网论文下载说明


所属栏目 综述

基金项目 国家自然科学基金资助项目(51001070)

收稿日期 2011/9/22

修改稿日期 2012/6/6

网络出版日期

作者单位点击查看

备注赵智泉(1986-), 女, 黑龙江哈尔滨人, 硕士研究生。

引用该论文: ZHAO Zhi-quan,LIU Qing-lei,HUANG Da-cheng,ZHOU Feng-yu,LIU Yuan-chao,ZHANG Di. Research Development of Preparation Methods and Properties of Si/C Nanocomposites Used for Cathode of Lithium-Ion Battery[J]. Materials for mechancial engineering, 2012, 36(9): 1~7
赵智泉,刘庆雷,黄大成,周凤羽,刘元超,张荻. 锂离子电池负极用硅/碳纳米复合材料制备方法和性能的研究进展[J]. 机械工程材料, 2012, 36(9): 1~7


被引情况:


【1】李兆萍,王一平,杨颖,陈吉,顾新云, "固相反应烧结制备锂离子电池正极材料LiFeBO3及其电化学性能",机械工程材料 38, 16-19(2014)

【2】张静,王月磊,刘浩涵,邱胜杰,蔡 聪,宓一鸣, "简单包覆改性LiMn2O4正极材料在高温下的电化学性能",机械工程材料 39, 59-64(2015)



论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】黄可龙, 王兆翔, 刘素琴.锂离子电池原理与关键技术[M].北京: 化学工业出版社, 2008.
 
【2】TEKI R, DATTA M K, KRISHNAN R, et al. Nanostructured silicon anodes for lithium ion rechargeable batteries[J].Small, 2009, 5: 2236-2242.
 
【3】KANG Y M, LEE S M, KIM S J, et al. Phase transitions explanatory of the electrochemicaldegradation mechanism of Si based materials[J].Electrochemistry Communications, 2007, 9: 959-964.
 
【4】MORITAZ T, TAKAMI N. Nano Si cluster-SiOx-C composite material as high-capacity anode material for rechargeable lithium batteries[J].Journal of the Electrochemical Society, 2006, 153: A425-A430.
 
【5】DING N, XU J, YAO Y X, et al. Determination of the diffusion coefficient of lithium ions in nano-Si[J].Solid State Ionics, 2009, 180: 222-225.
 
【6】LIU Y, HANAIA K, YANG J, et al. Morphology-stable silicon-based composite for Li-intercalation[J].Solid State Ionics, 2004, 168: 61-68.
 
【7】WANG K, HE X , WANG L, et al. Si, Si/Cu core in carbon shell composite as anode material in lithium-ion batteries[J].Solid State Ionics, 2007, 178: 115-118.
 
【8】RYU J H, KIM J W, SUNG Y E, et al. Failure modes of silicon powder negative electrode in lithium secondary batteries[J]. Electrochemical and Solid-State Letters, 2004, 7: A306-A309.
 
【9】CUI L F, RUFFO R, CHAN C K, et al. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes[J].Nano Letters, 2009, 9: 491-495.
 
【10】DATTA M K, KUMTA P N. Silicon, graphite and resin based hard carbon nanocomposite anodes for lithium ion batteries[J].Journal of Power Sources, 2007, 165: 368-378.
 
【11】KASAVAJJULA U, WANG C, APPLEBY A J. Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells[J].Journal of Power Sources, 2007, 163: 1003-1039.
 
【12】LARCHER D, MUDALIGE C, GEORGE A E, et al. Si-containing disordered carbons prepared by pyrolysis of pitch / polysilane blends: effect of oxygen and sulfur[J].Solid State Ionics, 1999, 122: 71-83.
 
【13】WEN Z S, YANG J, WANG B F, et al. High capacity silicon/carbon composite anode materials for lithium ion batteries[J]. Electrochemistry Communications, 2003, 5: 165-168.
 
【14】YANG J, WANG B F, WANG K, et al. SiO/C composites for high capacity lithium storage materials[J].Electrochemical and Solid-State Letters, 2003, 6: A154-A156.
 
【15】WANG L, DING C X, ZHANG L C, et al. A novel carbon-silicon composite nanofiber prepared via electrospinning as anode material for high energy-density lithium ion batteries[J].Journal of Power Sources, 2010, 195: 5052-5056.
 
【16】NG S H, WANG J, WEXLER D, et al. Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries[J].Angewandte Chemie-International Edition, 2006, 45: 6896-6899.
 
【17】NG S H, WANG J, WEXLER D, et al. Amorphous carbon-coated silicon nanocomposites: a low-temperature synthesis via spray pyrolysis and their application as high-capacity anodes for lithium-ion batteries[J].Journal of Physical Chemistry C, 2007, 111: 11131-11138.
 
【18】HOLZAPFEL M, BUQA H, KRUMEICH F, et al. Chemical vapor deposited silicon/graphite compound material as negative electrode for lithium-ion batteries[J].Electrochemical and Solid-State Letters, 2005, 8: A516-A520.
 
【19】HOLZAPFEL M, BUQA H, SCHEIFELE W, et al. A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion[J].Chemical Communications, 2005: 1566-1568.
 
【20】LUO Z, FAN D, LIU X, et al. High performance silicon carbon composite anode materials for lithium ion batteries[J].Journal of Power Sources, 2009, 189: 16-21.
 
【21】YOSHIO M, WANG H, FUKUDA K, et al. Carbon-coated Si as a lithium-ion battery anode material[J].Journal of the Electrochemical Society, 2002, 149: A1598-A1603.
 
【22】WANG G X, YAO J, LIU H K. Characterization of nanocrystalline Si-MCMB composite anode materials[J].Electrochemical and Solid-State Letters, 2004, 7: A250-A253.
 
【23】LIU W R, GUO Z Z, YOUNG W S, et al. Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive[J].Journal of Power Sources, 2005, 140: 139-144.
 
【24】YOSHIO M, TSUMURA T, DIMOV N. Electrochemical behaviors of silicon based anode material[J].Journal of Power Sources, 2005, 146: 10-14.
 
【25】ZHANG Y, ZHANG X G, ZHANG H L, et al. Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries[J].Electrochimica Acta, 2006, 51: 4994-5000.
 
【26】EOM J Y, PARK J W, KWON H S, et al. Electrochemical insertion of lithium into multiwalled carbon nanotube/silicon composites produced by ballmilling[J].Journal of The Electrochemical Society, 2006, 153: A1678-A1684.
 
【27】DIMOV N, KUGINO S, YOSHIO M. Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations[J].Electrochimica Acta, 2003, 48: 1579-1587.
 
【28】LEE H Y, LEE S M. Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries[J].Electrochemistry Communications, 2004, 6: 465-469.
 
【29】DATTA M K, KUMTA P N. Silicon and carbon based composite anodes for lithium ion batteries[J].Journal of Power Sources, 2006, 158: 557-563.
 
【30】GUO Z P, MILIN E, WANG J Z, et al. Silicon/disordered carbon nanocomposites for lithium-ion battery anodes[J].Journal of the Electrochemical Society, 2005, 152: A2211-A2216.
 
【31】LIU Y, HANAI K, YANG J, et al. Silicon/carbon composites as anode materials for Li-ion batteries[J].Electrochemical and Solid-State Letters, 2004, 7: A369-A372.
 
【32】WANG W, KUMTA P N. Reversible high capacity nanocomposite anodes of Si/C/SWNTs for rechargeable Li-ion batteries[J].Journal of Power Sources, 2007, 172: 650-658.
 
【33】HU Y S, DEMIR-CAKAN R, TITIRICI M M, et al. Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries [J].Angewandte Chemie-International Edition, 2008, 47: 1645-1649.
 
【34】WANG G X, AHN J H, YAO J, et al. Nanostructured Si-C composite anodes for lithium-ion batteries[J].Electrochemistry Communications, 2004, 6: 689-692.
 
【35】JUNG Y S, LEE K T, OH SEUNG M. Si-carbon core-shell composite anode in lithium secondary batteries[J].Electrochimica Acta, 2007, 52: 7061-7067.
 
【36】BRUCE P G, SCROSATI B, TARASCON J M. Nanomaterials for rechargeable lithium batteries[J].Angewandte Chemie-International Edition, 2008, 47: 2930-2946.
 
【37】KIM H, CHO J. Superior lithium electroactive mesoporous Si@carbon core-shell nanowires for lithium battery anode material[J].Nano Letters, 2008, 8: 3688-3691.
 
【38】SHU J, LI H, YANG R, et al. Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries[J].Electrochemistry Communications, 2006, 8: 51-54.
 
【39】CUI L F, YANG Y, HSU C M, et al. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries [J].Nano Letters, 2009, 9: 3370-3374.
 
【40】JI L, ZHANG X. Fabrication of porous carbon/Si composite nanofibers as high-capacity battery electrodes[J].Electrochemistry Communications, 2009, 11: 1146-1149.
 
【41】WANG W, KUMTA P N. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes[J].ACS Nano, 2010, 4: 2233-2241.
 
相关信息
   标题 相关频次
 14%SiC/7A04铝基复合材料的加工图
 2
 TiB和TiC对TiAl基金属间化合物显微组织和拉伸性能的影响
 2
 固相反应烧结制备锂离子电池正极材料LiFeBO3及其电化学性能
 2
 光子晶体结构TiO2薄膜的制备及其染料电池性能
 2
 聚乙烯醇水溶胶辅助制备碳纳米管/铝复合粉体及表征
 2
 锂电池安全性能无损检测技术研究进展
 2
 锂离子电池负极用一维ZnMn2O4纳米束材料的制备及电化学性能
 2
 铝含量对TB5钛合金组织和力学性能的影响
 2
 纳米结构金属氧化物气敏材料的研究进展
 2
 热氢处理对 (TiB, TiC)/Ti1100复合材料显微组织和相变点的影响
 2
 热氢处理对(TiB, TiC)/Ti-6Al-4V复合材料显微组织和力学性能的影响
 2
 深冷处理对SiC>p增强铝基复合材料热膨胀性能的影响
 2
 钛基复合材料小冲杆试验的有限元分析
 2
 碳纳米管/铝界面反应程度及其与复合材料力学性能的关系
 2
 氧含量对原位合成(TiB+La2O3)/Ti复合材料力学性能的影响
 2
 原位合成(TiB+TiC)/Ti-6Al-4V基复合材料的室温及高温拉伸性能
 2
 原位合成(TiB+TiC)/Ti-8Al-1Mo-1V复合材料的显微组织和室温力学性能
 2
 原位合成不同基体组织7715D钛基复合材料的高温力学性能
 2
 原位合成层状Ti-(TiB+TiC)/Ti复合材料的组织与力学性能
 2
 原位自生(TiB+La2O3)/TC4钛基复合材料的显微组织和力学性能
 2
 原位自生(TiC+TiB)/Ti复合材料的显微组织与残余应力
 2
 真空压力浸渗法制备金刚石/铝复合材料及其热性能
 2
  打破垄断!中国半导体关键材料取得突破 成功争夺5G时代主动权
 1
  弹性塑料电解质实现锂离子电池新设计
 1
  锂枝晶研究新发现,助锂电更安全
 1
  镍将在即将来临的电动汽车革命中发挥日益重要的作用
 1
 #国内材料周报#物理所研究获得长寿命疏水材料和密度最小的冰
 1
 #新能源周报#电子器件走向印刷时代
 1
 #新能源周报#太阳能电池与锂离子电池强强新组合
 1
 “双电解质”架构显著提升锂离子电池性能
 1