搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
TiAl金属间化合物材料本构模型的研究进展
          
Progress in Research of Constitutive Models of TiAl Intermetallic Materials

摘    要
从宏观唯象方面和微细观方面系统地介绍了国内外对TiAl金属间化合物材料本构模型的研究进展。在宏观唯象方面, 主要介绍了Arrhenius方程和Zener-Hollomon参数在描述TiAl金属间化合物高温流变行为方面的应用, 以及Z-A模型在描述TiAl金属间化合物在高温、高应变速率下流变行为方面的应用; 在微细观方面, 主要介绍了国内外基于TiAl金属间化合物的微细观结构特征和变形机理等, 以及运用晶体塑性理论和有限元分析建立的微细观预测模拟模型。
标    签 TiAl金属间化合物   多孪晶合成(PST)晶体合金   本构模型   晶体塑性理论   Arrhenius方程   TiAl intermetallics   polysynthetically twinned (PST) crystals alloy   constitutive model   crystal plasticity theroy   Arrhenius equation  
 
Abstract
Various constitutive models of TiAl-based intermetallic alloys are introduced from macro and micro aspects in this paper. Firstly, the statuses about the Arrhenius models, Zener-Hollomon parameters and Z-A model used in describing the flow behaviors of TiAl-based intermetallic alloys at high temperatures or at high strain rates are reviewed Then, the micro-scale models developed in the basis of microstructure features and deformation mechanics as well as using the crystal plasticity theory and finite element method are presented.

中图分类号 TG146 TB125

 
  中国光学期刊网论文下载说明


所属栏目 综述

基金项目 国家自然科学基金资助项目(51205190); 中央高校基本科研业务费专项资金资助项目(NZ2012113)

收稿日期 2012/5/24

修改稿日期 2013/3/29

网络出版日期

作者单位点击查看

备注张宏建(1980—), 男, 江苏如皋人, 副教授, 博士。

引用该论文: ZHANG Hong-jian,WEN Wei-dong,CUI Hai-tao. Progress in Research of Constitutive Models of TiAl Intermetallic Materials[J]. Materials for mechancial engineering, 2013, 37(7): 1~5
张宏建,温卫东,崔海涛. TiAl金属间化合物材料本构模型的研究进展[J]. 机械工程材料, 2013, 37(7): 1~5


被引情况:


【1】张钦差,陈明和,欧阳金栋,雷晓晶,吴亚凤, "Ti2AlNb合金的高温拉伸变形行为",机械工程材料 40, 68-72(2016)



论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】YAMAGUCHI M. High temperatures structural intermetallics[J].Acta Mater, 2000, 48: 307-322.
 
【2】王刚, 徐磊, 崔玉友, 等.粉末冶金TiAl基合金高温变形行为及其本构模型[J].中国有色金属学报, 2010, 20(1): 269-273.
 
【3】ZHANG W, LIU Y, LI H Z, et al. Constitutive modeling and processing map for elevated temperature flow behaviors of a powder metallurgy titanium aluminide alloy[J].Journal of Materials Processing Technology, 2009, 209: 5363-5370.
 
【4】司家勇, 韩鹏彪, 张继.Ti-46.5Al-2.5V-1.0Cr-0.3Ni合金高温锻造本构模型研究[J].锻压技术, 2009, 34(5): 121-125.
 
【5】高帆, 王新英, 王磊, 等.工业尺寸TiAl合金铸锭高温变形行为[J].塑性工程学报, 2010, 17(4): 104-109.
 
【6】付明杰, 静永娟, 张继.挤压开坯γTiAl 合金的热变形行为研究[J].材料工程, 2011(5): 62-65.
 
【7】李慧中, 李洲, 刘咏, 等. TiAl 基合金的高温塑性变形行为[J].中国有色金属学报, 2010, 20(1): 79-85.
 
【8】CHEN Yu-yong, YANG Fei, KONG Fan-tao, et al. Constitution modeling and deformation behavior of yttrium bearing TiAl alloy[J].Journal of Rare Earths, 2011, 29(2): 114-118.
 
【9】JOHSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]// Proceedings of the Seventh International Symposium on Ballistics. Hague, Netherlands: [s.n.], 1983: 541-547.
 
【10】ZERILLI F J, ARMSTRONG R W. Description of tantalum deformation behavior by dislocation mechanics based constitutive relations [J].J Appl Phys, 1990, 68(4): 1580-1591.
 
【11】ZERILLI F J, ARMSTRONG R W. Dislocation mechanics based constitutive relations for material dynamics calculations [J].J Appl Phys, 1987, 61(5): 1816-1825.
 
【12】FOLLANSBEE P S, KOCKS U F. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable [J].Acta Metall, 1988, 36(1): 81-93.
 
【13】ZAN Xiang, HE Yue-hui, WANG Yang, et al. Tensile impact behavior and deformation mechanism of duplex TiAl intermetallics at elevated temperatures[J].Journal of Materials Science, 2010, 45: 6446-6454.
 
【14】VOYIADJIS G Z, ABED F H. Microstructural based models for bcc and fcc metals with temperature and strain rate dependency[J].Mechanics of Materials, 2005, 37: 355-378.
 
【15】ABED F H, VOYIADJIS G Z. A consistent modified Zerilli-Armstrong flow stress model for BCC and FCC metals for elevated temperatures [J].Acta Mechanica, 2005, 175: 1-18.
 
【16】ZHANG Hong-jian, WEN Wei-dong, CUI Hai-tao, et al. A modified Zerilli-Armstrong model for alloy IC10 over a wide range of temperatures and strain rates[J].Materials Science & Engineering A, 2009, 527: 328-333.
 
【17】LIN Y C, CHEN X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J].Materials and Design, 2011, 32: 1733-1759.
 
【18】ASARO R J. Crystal plasticity [J].Journal of Applied Mechanics, 1983, 50: 921-934.
 
【19】PARTEDER E, SIGMUND T, FISCHER F D, et al. Numerical simulation of the plastic behavior of polysynthetically twinned Ti-Al crystals[J].Mater Sci Eng A, 1995, 192/193: 149-154.
 
【20】ZAMBALDI C, RAABE D. Plastic anisotropy of γ-TiAl revealed by axisymmetric indentation[J].Acta Materialia, 2010, 58: 3516-3530.
 
【21】ZAMBALDI C, RAABE D. Crystal plasticity modelling and experiments for deriving microstructure-property relationships in γ-TiAl based alloys[J].Journal of Physics: Conference Series, 2010, 240: 1-4.
 
【22】DAO M, KAD B K, ASARO R J. Deformation and fracture under compressive loadingin lamellar TiAl microstructures[J].Philos Mag A, 1996, 74(3): 569-591.
 
【23】KAD B K, DAO M, ASARO R J. Numerical simulations of plastic deformation and fracture effects in two phase γ-TiAl and a2-Ti3Al lamellar microstructures[J].Philos Mag A, 1995, 71(3): 567-604.
 
【24】KAD B K, DAO M, ASARO R J. Numerical simulations of stress-strain behavior in two phase α2+γ lamellar TiAl alloys[J].Mater Sci Eng A, 1995, 192/193: 97-103.
 
【25】KAD B K, ASARO R J. Apparent Hall-Petch effects in polycrystalline lamellar TiAl[J].Philos Mag A, 1997, 75(1): 87-104.
 
【26】ROBERT A, BROCKMAN. Analysis of elastic-plastic deformation in TiAl polycrystals[J].International Journal of Plasticity, 2003, 19: 1749-1772.
 
【27】SCHLLGL S M, FISCHER F D.Micromechanical modelling of TiAl intermetallics[J].Compos Mater Sci, 1996, 7: 34-39.
 
【28】SCHLLGL S M, FISCHER F D. The role of slip and twinning in the deformation behaviour of polysynthetically twinned crystals of TiAl: a micromechanical model[J].Philos Mag A, 1997, 75(3): 621-636.
 
【29】SCHLLGL S M, FISCHER F D. Numerical simulation of yield loci for PST crystals of TiAl[J].Mater Sci Eng A 1997, 239/240: 790-803.
 
【30】WERWER, CORNEE A. Numerical simulation of plastic deformation and fracture in polysynthetically twinned (PST) crystals of TiAl[J].Computational Materials Science, 2000, 19: 97-107.
 
相关信息
   标题 相关频次
 IC10合金的高温拉伸性能
 6
 TC17钛合金热变形行为及本构模型
 4
 累积损伤方法在复合材料接头研究中的应用
 4
 沥青基碳/碳复合材料的弯曲性能
 4
 钛合金燕尾榫结构在不同疲劳载荷下的断口分析
 4
 微动疲劳加载装置的设计及其在典型合金上的应用
 4
 轴向和法向应力对DD3和DZ125镍基合金微动疲劳性能的影响
 4
 4Cr5MoSiV1热作模具钢的热变形行为与热加工图
 2
 6000系铝合金薄壁结构压缩断裂行为的有限元模拟
 2
 7075铝合金热压缩动态软化行为的本构模型
 2
 E-玻璃纤维2D编织层铺增强复合材料的损伤力学本构模型及应用
 2
 Fe-10Mn-2Al-0.1C中锰钢的本构模型与热加工图
 2
 GH4169高温合金的动态力学行为及其本构关系
 2
 P92钢多轴蠕变本构模型的建立及验证
 2
 TC8钛合金的动态力学性能及本构关系
 2
 车用双相高强钢的动态力学性能及本构模型的对比
 2
 高速冲击下子午线轮胎胎面胶的本构模型
 2
 含硼不锈钢的热变形行为
 2
 基于Chaboche模型的金属材料稳态循环应力-应变曲线的本构建模方法
 2
 基于蒙特卡罗法和有限元法分析封装焊点中微孔洞对应力的影响
 2
 金属材料本构模型的研究进展
 2
 热处理U71Mn钢轨钢的棘轮行为及其本构模型
 2
 新型CHDG-A06奥氏体不锈钢的热变形行为
 2
 Ti2AlNb合金的高温拉伸变形行为
 1
 形状记忆合金三维鼓包结构热变形的有限元模拟
 1
 应变速率对镁合金压缩变形性能的影响
 1