搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
面向钢轨的无线结构健康监测的挑战与应用
          
Challenges and Applications of Structure Health Monitoring for Railway Based on Wireless Sensor Network

摘    要
对面向钢轨的无线结构健康监测的挑战和应用进行综述。从传感器优化布置、能量采集和节能、时间同步和可靠性技术出发, 提出了钢轨结构健康监测背景下的挑战; 列举了相关的有助于解决这些挑战的应用。
标    签 无线传感器网络   结构健康监测   优化布置   能量   WSN   SHM   Optimal placement   Energy  
 
Abstract
This paper reviews the recent progress for Wireless Sensor Network (WSN) based Structure Health Monitoring (SHM) technology for railway applications. Special challenges including optimal sensor placement, energy conservation and harvesting, time synchronization and reliability under the background of railway are enumerated. Case studies were made on related applications which may help to address these challenges.

中图分类号 TG115.28   DOI 10.11973/wsjc201612008

 
  购买该论文  中国光学期刊网论文下载说明


所属栏目 2016远东无损检测新技术论坛论文精选

基金项目 国家重大仪器专项资助项目(61527803);江苏省研究生培养创新工程资助项目(KYLX16_0338)

收稿日期 2016/6/22

修改稿日期

网络出版日期

作者单位点击查看


备注胡泮(1989-), 男, 博士研究生, 主要研究方向为结构健康监测。

引用该论文: HU Pan,WANG Hai-tao,TIAN Gui-yun,GAO Yun-lai,ZENG Wei. Challenges and Applications of Structure Health Monitoring for Railway Based on Wireless Sensor Network[J]. Nondestructive Testing, 2016, 38(12): 32~35
胡泮,王海涛,田贵云,高运来,曾伟. 面向钢轨的无线结构健康监测的挑战与应用[J]. 无损检测, 2016, 38(12): 32~35


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】ALLISON A B. Sperry rail service[J]. Bull Natl Railway Historical Soc, 1968,33:6.
 
【2】CLARK R. Rail flaw detection: overview and needs for future developments[J]. NDT & E International, 2004, 37(2):111-118.
 
【3】ZENG W, WANG H, TIAN G, et al. Detection of surface defects for longitudinal acoustic waves by a laser ultrasonic imaging technique[J]. Optik-International Journal for Light and Electron Optics, 2015, 127(1):415-459.
 
【4】TIAN G Y, SOPHIAN A. Study of magnetic sensors for pulsed eddy current techniques[J]. Insight, 2005, 47(5):277-279.
 
【5】GAO Y, TIAN G Y, WANG P, et al. Ferrite-yoke based pulsed induction thermography for cracks quantitative evaluation[C]∥2015 IEEE Far East NDT New Technology & Application Forum.[S.l]:[s.n], 2015:197-201.
 
【6】TIAN G Y, SOPHIAN A. Defect classification using a new feature for pulsed eddy current sensors[J]. Ndt & E International, 2005, 38(1):77-82.
 
【7】FEDERICI F, ALESII R, COLARIETI A, et al. Design of wireless sensor nodes for structural health monitoring applications[J]. Procedia Engineering, 2014, 87:1298-1301.
 
【8】SU Z, YE L. Identification of damage using Lamb waves: from fundamentals to applications[M]. Springer London: Springer Science & Business Media, 2009:1-12.
 
【9】QIU L, YUAN S. On development of a multi-channel PZT array scanning system and its evaluating application on UAV wing box[J]. Sensors & Actuators A Physical, 2009, 151(2):220-230.
 
【10】MUFTI A A. Structural health monitoring of innovative canadian civil engineering structures[J]. Structural Health Monitoring, 2002, 1(1):89-103.
 
【11】FIDANOVA S, MARINOV P, ALBA E. Ant algorithm for optimal sensor deployment[J]. Studies of Computational Intelligence, 2012,399(5):21-29.
 
【12】HODGE V J, O′KEEFE S, WEEKS M, et al. Wireless sensor networks for condition monitoring in the railway industry: A survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(3):1088-1106.
 
【13】ANASTASI G, CONTI M, DI FRANCESCO M, et al. Energy conservation in wireless sensor networks: A survey[J]. Ad Hoc Networks, 2009,7(3): 537-568.
 
【14】GUPTA P, KAKDE B. Challenges and design issues in WSN[J]. International Journal of Science, Engineering and Technology Research, 2014, 3(11):3126-3131.
 
【15】SEAH W K G, TAN Y K, CHAN A T S. Research in energy harvesting wireless sensor networks and the challenges ahead[M]. Autonomous Sensor Networks: Springer Berlin Heidelberg, 2012:73-93.
 
【16】SONG S, HE L, JIANG Y, et al. Wireless sensor network time synchronization algorithm based on SFD[J]. Advances in Wireless Sensor Networks Communications in Computer and Information Science, 2013, 334(2): 393-400.
 
【17】SALAM H A, KHAN B M. IWSN-standards, challenges and future[J]. IEEE Potentials, 2016, 35(2):9-16.
 
【18】JIN H, XIA J, WANG Y Q. Optimal sensor placement for space modal identification of crane structures based on an improved harmony search algorithm[J]. Journal of Zhejiang University SCIENCE A, 2015, 16(6):464-477.
 
【19】LI B, DER K A. Robust optimal sensor placement for operational modal analysis based on maximum expected utility[J]. Mechanical Systems and Signal Processing, 2016, 75:155-175.
 
【20】VULLERS R J M, SCHAIJK R V, VISSER H J, et al. Energy harvesting for autonomous wireless sensor networks[J]. Solid-State Circuits Magazine, IEEE, 2010, 2(2):29-38.
 
【21】KHAN F U, AHMAD I. Review of energy harvesters utilizing bridge vibrations[J]. Shock & Vibration, 2016, 2016(2):1-21.
 
【22】JEON Y B, SOOD R, JEONG J H, et al. MEMS power generator with transverse mode thin film PZT[J]. Sensors & Actuators A Physical, 2005, 122(1):16-22.
 
【23】CHIU M C, CHANG Y C, YEH L J, et al. Optimal design of a vibration-based electromagnetic energy harvester using a simulated annealing algorithm[J]. Journal of Mechanics, 2012, 28(4):691-700.
 
【24】WISCHKE M, KRONER M, WOIAS P, et al. Vibration harvesting in traffic tunnels to power wireless sensor nodes[J]. Smart Materials & Structures, 2011, 20(8):85014-85021.
 
【25】NELSON C A, PLATT S R, ALBRECHT D, et al. Power harvesting for railroad track health monitoring using piezoelectric and inductive devices[C]∥The 15th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring.[S.l.]: International Society for Optics and Photonics, 2008.
 
【26】ZHU D, BEEBY S, TUDOR J, et al. Increasing output power of electromagnetic vibration energy harvesters using improved Halbach arrays[J].Sensors & Actuators A Physical,2013,203(12):11-19.
 
【27】LEE J, YOON S W. Optimization of magnet and back iron topologies in electromagnetic vibration energy harvesters[J]. IEEE Transactions on Magnetics, 2014, 51(6):1.
 
【28】QIU T, CHI L, GUO W, et al. STETS: A novel energy-efficient time synchronization scheme based on embedded networking eevices[J]. Microprocessors & Microsystems, 2015, 39(8):1285-1295.
 
【29】HUANG G, ZOMAYA A Y, DELICATO F C, et al. An accurate on-demand time synchronization protocol for wireless sensor networks[J]. Journal of Parallel & Distributed Computing, 2012, 72(10):1332-1346.
 
相关信息
   标题 相关频次
 钢轨裂纹高速漏磁巡检中的动态磁化及速度效应分析
 6
 钢轨疲劳斜裂纹垂向磁化检测仿真
 6
 钢轨疲劳斜裂纹垂向磁化检测仿真
 6
 高速漏磁检测中钢轨磁化强度的研究
 6
 基于波速分析的激光超声检测技术
 6
 激光超声技术及其应用
 6
 钢轨损伤的无线传感网络监测系统
 5
 基于碳纳米管压阻效应的复合材料结构健康监测技术
 5
 巴克豪森应力检测中激励方式的影响
 4
 超声相控阵声束控制特性分析
 4
 钢轨表面缺陷漏磁检测的三维磁场分析
 4
 钢轨漏磁检测的速度效应
 4
 高速铁路钢轨电磁检测试验
 4
 基于BP神经网络的巴克豪森铁轨温度应力检测
 4
 基于巴克豪森效应的钢轨表面应力研究
 4
 基于电磁原理的钢轨裂纹高速在线巡检方法
 4
 基于光声效应的激光超声波检测技术
 4
 基于漏磁信号的钢轨斜裂纹识别
 4
 基于无线传感网络的远程燃气管道泄漏检测系统
 4
 金属磁记忆累积机理
 4
 脉冲涡流检测技术的研究
 4
 脉冲涡流无损检测技术的研究进展
 4
 脉冲涡流阵列缺陷成像检测技术
 4
 无线传感网络技术及其在结构健康监控应用中的关键问题
 4
 基于声发射传感器阵列的风机叶片结构健康监测方法
 3
 基于无线传感器网络的燃气管道检测系统身份认证技术
 3
 JB/T 4730—2005与SY/T 4109—2005标准射线部分的主要区别
 2
 Lamb波检测法及其在风机叶片结构健康监测中的应用
 2
 RPV辐照脆化巴克豪森噪声检测的二维仿真
 2
 WiFi无线技术在巴克豪森无损检测系统中的应用
 2