搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
DNA-Fe配合物生物聚合离子膜修饰玻碳电极的制备及其用作过氧化氢电化学传感器的研究
          
Study on the Preparation of DNA-Fe/CTS BPICM Modified GCE and Its Use as Electrochemical Biosensor for H2O2

摘    要
将1.00 g·L-1 DNA溶液与1.00 mmol·L-1三氯化铁溶液混合制得DNA-Fe(Ⅲ)配合物溶液。取溶液20 μL滴涂于经抛光的GCE表面,滴加0.50 g·L-1 CTS溶液10 μL,于20℃干燥22 h制得DNA-Fe/CTS修饰的GCE电极。利用扫描电子显微镜对DNA-Fe/CTS BPICM的形貌进行了表征。采用循环伏安法和安培-时间曲线法研究该修饰电极的电化学特性及该电极对过氧化氢的电化学响应。结果表明,固定在聚合膜中的铁离子表现出较好的电化学活性,DNA-Fe/CTS/GCE对过氧化氢的还原反应具有较好的电催化活性。由此提出了一种新型生物相容性过氧化氢电化学传感器。该传感器的线性范围为0.01~2.0 mmol·L-1,检出限(3S/N)为3 μmol·L-1
标    签 DNA-Fe (Ⅲ)配合物   生物聚合离子膜   过氧化氢   电化学传感器   DNA-Fe (Ⅲ) complex   bio-polyion complex membrane   H2O2   electrochemical sensor  
 
Abstract
Complex of DNA-Fe(Ⅲ) was prepared by mixing 1.00 g·L-1 DNA solution with 1.00 mmol·L-1 FeCl3 solution. A portion (20 μL) of the DNA-Fe(Ⅲ) solution was applied on the surface of the polished GCE, and then 10 μL of 0.50 g·L-1 CTS solution were dropped onto the GCE to give DNA-Fe/CTS modified GCE electrode after drying at 20℃ for 22 h. Morphology of the modified electrode was characterized by SEM, and its electrochemical behavior and response to H2O2 were studied by cyclic voltammetry and the i-t curve. It was found that better electrochemical activity was exhibited by the Fe(Ⅲ) embedded in the DNA/CTS layer and that better electrocatalytic activity for reduction of H2O2 at the modified electrode of DNA-Fe/CTS/GCE was observed. Based on these facts, a novel, bio-compatible electrochemical biosensor for H2O2 was proposed. Linearity range of this biosensor was found between 0.01 and 2.0 mmol·L-1 H2O2 with value of detection limit (3S/N) of 3 μmol·L-1.

中图分类号 O657.14   DOI 10.11973/lhjy-hx201707002

 
  中国光学期刊网论文下载说明


所属栏目 试验与研究

基金项目 辽宁省自然基金项目(2015020624);辽宁省教育厅创新团队项目(LT2014007);辽宁省教育科学“十二五”规划课题(JG11DB140);辽宁科技大学优秀人才专项基金(201301);辽宁科技大学研究生教育创新计划教育教学改革研究与实践项目(2014YJSCX07)

收稿日期 2016/7/3

修改稿日期

网络出版日期

作者单位点击查看


备注南明君(1992-)男,满族,辽宁大连人,硕士研究生,研究方向为电化学生物传感技术

引用该论文: NAN Mingjun,GU Tingting,ZHOU Yang,JIA Nannan,WANG Xu. Study on the Preparation of DNA-Fe/CTS BPICM Modified GCE and Its Use as Electrochemical Biosensor for H2O2[J]. Physical Testing and Chemical Analysis part B:Chemical Analysis, 2017, 53(7): 753~758
南明君,顾婷婷,周洋,贾楠楠,王旭. DNA-Fe配合物生物聚合离子膜修饰玻碳电极的制备及其用作过氧化氢电化学传感器的研究[J]. 理化检验-化学分册, 2017, 53(7): 753~758


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】GU T, HASEBE Y. Novel amperometric assay for drug-DNA interaction based on an inhibitory effect on an electrocatalytic activity of DNA-Cu(Ⅱ) complex[J]. Biosensors and Bioelectronics, 2012,33(1):222-227.
 
【2】GU T, HASEBE Y. DNA-Cu(Ⅱ) poly(amine) complex membrane as novel catalytic layer for highly sensitive amperometric determination of hydrogen peroxide[J]. Biosensors and Bioelectronics, 2006,21(11):2121-2128.
 
【3】GU T, HASEBE Y. Peroxidase and methylene blue-incorporated double stranded DNA-polyamine complex membrane for electrochemical sensing of hydrogen peroxide[J]. Analytica Chimica Acta, 2004,525(2):191-198.
 
【4】GU T, LIU Y, ZHANG J, et al. Amperometric hydrogen peroxide biosensor based on immobilization of DNA-Cu(Ⅱ) in DNA/chitosan polyion complex membrane[J]. Journal of Environmental Sciences, 2009,21(1):56-59.
 
【5】GU T, ZHANG Y, DENG F, et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on DNA/chitosan film[J]. Journal of Environmental Sciences, 2011,23(s):s66-s69.
 
【6】顾婷婷,夏洪齐.基于DNA-甲苯胺蓝生物聚合离子膜的多环有机物电化学传感器的研究[J].理化检验-化学分册, 2014,50(9):1070-1075.
 
【7】NIA P M, LORESTANI F, MENG W P, et al. A novel non-enzymatic H2O2 sensor based on polypyrrole nanofibers-silver nanoparticles decorated reduced graphene oxide nano composites[J]. Applied Surface Science, 2015,332:648-656.
 
【8】YANG L Z, XU C L, YE W C, et al. An electrochemical sensor for H2O2 based on a new Co-metal-organic framework modified electrode[J]. Sensors and Actuators B:Chemical, 2015,215(4):489-496.
 
【9】KHAN S B, RAHMAN M M, ASIRI A M, et al. Fabrication of non-enzymatic sensor using Co doped ZnO nanoparticles as a marker of H2O2[J]. Physica E:Low-dimensional Systems and Nanostructures, 2014,62:21-27.
 
【10】SAHIN O G. Microwave-assisted synthesis of PtAu@C based bimetallic nanocatalysts for non-enzymatic H2O2 sensor[J]. Electrochimica Acta, 2015,180:873-878.
 
【11】ZHANG J X, TU L P, ZHAO S, et al. Fluorescent gold nanoclusters based photo-electrochemical sensors for detection of H2O2 and glucose[J]. Biosensors and Bioelectronics, 2015,67:296-302.
 
【12】许艳霞,倪小英,邓志坚,等.基于血红蛋白在纳米银溶胶修饰玻碳电极上电化学反应的过氧化氢传感器[J].理化检验-化学分册, 2016,52(5):518-523.
 
【13】YU C M, WANG L, LI W B, et al. Detection of cellular H2O2 in living cells based on horseradish peroxidase at the interface of Au nanoparticles decorated graphene oxide[J]. Sensors and Actuators B:Chemical, 2015,211:17-24.
 
【14】ZHOU K F, ZHU Y H, YANG X L, et al. A novel hydrogen peroxide biosensor based on Au-graphene-HRP-chitosan biocomposites[J]. Electrochimica Acta, 2010,55(9):3055-3060.
 
【15】汪涛,王朝霞,王学亮,等.基于血红蛋白/金纳米粒子/聚二烯丙基二甲基氯化铵-多壁碳纳米管生物传感器测定过氧化氢[J].理化检验-化学分册, 2013,49(5):577-579.
 
【16】倪鹏,江涛,施锦辉,等.石墨烯/酶纳米复合多层膜修饰电极测定食品中的过氧化氢含量[J].理化检验-化学分册, 2016,52(6):648-651.
 
【17】VILIAN A T E, CHEN S M, LOU B S. A simple strategy for the immobilization of catalase on multi-walled carbon nanotube/poly (L-lysine) biocomposite for the detection of H2O2 and iodate[J]. Biosensors and Bioelectronics, 2014,61:639-647.
 
【18】NALINI S, NANDINI S, SHANMUGAM S, et al. Amperometric hydrogen peroxide and cholesterol biosensors designed by using hierarchical curtailed silver flowers functionalized graphene and enzymes deposits[J]. Journal of Solid State Electrochemistry, 2014,18(3):685-701.
 
【19】MERCEDES A, PIETRO V, CARME R. The reaction mechanisms of heme catalases:An atomistic view by ab initio molecular dynamics[J]. Archives of Biochemistry and Biophysics, 2012,525(2):121-130.
 
【20】崔焱,华一新,李艳,等.Fe(Ⅲ)/Fe(Ⅱ)在[Bmim]BF4-FeCl3-H2O体系中的电化学行为[J].有色金属(冶炼部分), 2009(3):2-6.
 
【21】CARTER M T, BARD A J. Voltammetric studies of the interaction of tris(1,10-phenanthroline)cobalt(Ⅲ) with DNA[J]. Journal of the American Chemical Society, 2002,109(24):7528-7530.
 
【22】约瑟夫·王.分析电化学[M].3版.朱永春,张玲,译.北京:化学工业出版社, 2009:28-31.
 
【23】LIANG R P, CHEN Y X, QIU J D. A sensitive amperometric immunosensor for hepatitis B surface antigen based on biocompatible redox-active chitosan-toluidine blue/gold nanoparticles composite film[J]. Analytical Methods, 2011,3(6):1338-1343.
 
【24】LAVIRON E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979,101(1):19-28.
 
【25】LIU S, TIAN J Q, WANG L, et al. A method for the production of reduced graphene oxide using benzylamine as a reducing and stabilizing agent and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection[J]. Carbon, 2011,49(10):3158-3164.
 
【26】ZHONG L J, GAN S Y, FU X G, et al. Electrochemically controlled growth of silver nanocrystals on graphene thin film and applications for efficient nonenzymatic H2O2 biosensor[J]. Electrochimica Acta, 2013,89:222-228.
 
相关信息
   标题 相关频次
 持久性有机污染物电化学分析的研究进展
 4
 0Cr18Ni9、1Cr13和1Cr17不锈钢在熔融LiCl-5%Li2O中的腐蚀行为
 2
 316L不锈钢在熔融LiCl-3%Li2O中的腐蚀行为
 2
 Ti3Al金属间化合物在熔融LiCl-Li2O中的热腐蚀行为
 2
 胺菊酯分子印迹电化学传感器的制备及性能
 2
 超高转速搅拌摩擦焊铝合金板的焊接变形和残余应力
 2
 动载条件下16Mn钢在模拟大气环境中的氢渗透行为
 2
 分子印迹电化学传感器研究进展
 2
 蜂窝芯体厚度对Nomex蜂窝夹层复合材料压缩性能的影响
 2
 辅酶Q在CPT自组装修饰电极上的电化学行为及其分析应用
 2
 腐蚀对TC17钛合金超高周疲劳性能的影响
 2
 高纯Ti3SiC2的合成及其反应机理
 2
 环形炉内罩用310S耐热不锈钢的蠕变寿命预测
 2
 基于Teflon AF/陶瓷复合膜和电化学传感器的变压器油中溶解气体的在线监测系统
 2
 基于纳米SnS/多壁碳纳米管复合物的2,4-二氯苯酚电化学传感器的制备及应用
 2
 基于纳米TiO2和TiN为工作电极的循环伏安法测定过氧化氢的含量
 2
 基于细胞色素C双通道比率型过氧化氢生物传感器测定过氧化氢
 2
 聚多巴胺自组装膜对316L不锈钢缓蚀性能的影响
 2
 纳米材料制备的电化学传感器在水合肼检测中的应用研究进展
 2
 上转换纳米粒子NaYF4:Yb,Er的免疫荧光淬灭法测定中性粒细胞明胶酶相关载脂蛋白
 2
 识别酪氨酸对映体的分子印迹电化学传感器
 2
 识别牛血红蛋白的分子印迹电化学传感器的制备与研究
 2
 双酚A电化学检测方法的研究进展
 2
 1-(2-吡啶偶氮)-2-萘酚-过氧化氢光度法测定土壤中痕量钒
 1
 16MnR钢板低温冲击过程的声信号特性
 1
 20CrMnTi钢齿轮锻件表面缺陷产生原因
 1
 20MnCr5钢齿轮轴渗碳淬火后表面缺陷原因分析
 1
 2-氨基咪唑血红素模拟酶催化荧光光谱法测定过氧化氢
 1
 AZ31镁合金表面沉积类金刚石薄膜在Hank′s体液中的腐蚀行为
 1
 Cr(Ⅵ)-鲁米诺-过氧化氢-8-羟基喹啉化学发光体系的研究及应用
 1