扫一扫 加微信
首页 > 期刊论文 > 论文摘要
汽车用金属材料在高应变速率下响应特性的研究进展
          
Research Progress of Response Characteristics of Metallic Materials for Automotive under High Strain Rates

摘    要
基于轻量化和安全性的要求,对汽车用金属材料在高应变速率下的响应特性进行了大量的研究;对高应变速率下的试验设备、试验方法、试验数据处理方法及描述材料响应特性的本构方程等方面的研究进展进行了综述;总结了高强度钢和先进高强度钢在高应变速率下的响应特性、拟合的本构方程以及组织演变规律;介绍了典型铝合金和镁合金在高应变速率下的响应特性,提出了考虑温度和热激活能影响的描述铝合金和镁合金在高应变速率下流变特性的本构方程;对高应变速率下汽车用金属材料响应特性的试验设备、试验方法和研究方向等提出了一些建议。
标    签 高应变速率   汽车轻量化   先进高强度钢   铝合金   镁合金   high strain rate   automobile light weight   advanced high strength steel   aluminium alloy   magnesium alloy  
 
Abstract
Based on the requirements of light weight and safty, a lot of research on response characteristics for automobile metal materials under high strain rate was carried out. The research progress of test equipments, test methods, test data processing methods and the constitutive equation to describe the material response characteristics under high strain rates was summarized. The response characteristics, fitting constitutive equations and the microstructure evolution law of high strength steel and advanced high strength steel under high strain rates were concluded. The response characteristics of the typical aluminum alloy and magnesium alloy under high strain rates were introduced and the constitutive equation of describing rheological behavior of aluminum and magnesium alloys which considering the effects of temperature and thermal activation energe was raised. Some suggestions were proposed about test equipment, test methods, development direction of response characteristics of metallic material for automotive under high strain rates.

中图分类号 TB31   DOI 10.11973/jxgccl201709001

 
  中国光学期刊网论文下载说明


所属栏目 综述

基金项目

收稿日期 2017/3/15

修改稿日期 2017/8/11

网络出版日期

作者单位点击查看

备注马鸣图(1942-),男,河南兰考人,教授级高工,博士

引用该论文: MA Mingtu,LI Jie,ZHAO Yan,WU Emei. Research Progress of Response Characteristics of Metallic Materials for Automotive under High Strain Rates[J]. Materials for mechancial engineering, 2017, 41(9): 1~13
马鸣图,李洁,赵岩,吴娥梅. 汽车用金属材料在高应变速率下响应特性的研究进展[J]. 机械工程材料, 2017, 41(9): 1~13


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】MA M G, YI H L, LU H Z. On the lightweight of automobile[J]. Enginerring Science,2009,11(9):20-27.
 
【2】马鸣图,张宜生,宋磊峰,等.超高强度钢热冲压成形的研究进展(下)[J]. 新材料产业,2015(9):61-67.
 
【3】马鸣图,吴宝榕. 双相钢力学冶金[M]. 北京:冶金工业出版社,2008:1-12.
 
【4】马鸣图,吴娥梅. 高强度钢在汽车轻量化和安全器件上的应用[J]. 新材料产业,2014(7):15-19.
 
【5】FUGANTI A.新一代高强钢在未来汽车上的应用[M].北京:冶金工业出版社, 2006:5-6.
 
【6】MARLEN B. Improving sustainability in the transport sector[R]. Dalian:[s.n.], 2007.
 
【7】赵阳,黄震雷,周恒辉. 纯电动汽车动力电池系统的发展现状[J]. 新材料产业,2015(6):37-41.
 
【8】佚名.德国国家电动汽车平台报告[J]. 汽车参考,2011(3):1-41.
 
【9】Metal Forming Research Group. Development of POSCO body concept for electric vehicle:PBC-EV[R]. Shanghai:POSCO, 2014.
 
【10】马鸣图,吴宝榕.双相钢:物理和力学冶金[M].北京:冶金工业出版社,1988:100-101.
 
【11】HATT W K, MARBURG E. Preliminary report on the present state of knowledge concerning impact tests[J]. Process American Society Testing Meterials,1899,1:27-50.
 
【12】YOUNG T. A course of lectures on natural philosophy and the mechanical arts[M]. London:J. & H. COX, Brothers, 1807:144-148.
 
【13】HOPKINSON J.Further experiments on the rupture of iron wire[J]. Process Manchestist Literal Philosophy Society.1872, 11:119-121.
 
【14】HOPKINSON J. On the rupture of an iron wire by a blow[J]. Process Manchestist Literal Philosophy Society,1872, 11:40-45.
 
【15】DUNN B W. A photographic impact testing machine for measuring the varying intensity of an impulsive force[J]. Journal of Franklin Institute, 1897,145(1):321-348.
 
【16】HOPKINSON B. The effects of momentary stresses in metals[J]. Proceedings of the Royal Scociety of London, 1904,74:498-506.
 
【17】HOPKINSON B. A method of measuring the pressure products in the detonation of high explosives or by the impact of bullets[J]. Philosophical Transactions of the Royal Society of London, 1914, 213:437-456.
 
【18】FEHR O, PARKER E R, DEMICHAEL D J. Measurement of dynamic stress and strain in tensile test specimens[J]. Journal of Applied Mechanics, 1944, 66:65-71.
 
【19】KOLSKY H. An investigation of the mechanical properties of materials at very high rate of loading[J].Proceeding of Physical Society, 2002, 62(11):676-700.
 
【20】GILAT A, WU X. Elecated temperature testing with the torsional Hopkinson bar[J]. Experimental Mechanics,1994,34(2):166-170.
 
【21】FRANTZ C E, FOLLANSBEE P S, HAWLEY R H. New experimental techniques with the Hopkinson pressure bar[J]. Presented at International Conference on High Energy Rate Fabrication,1984, 1:229-236.
 
【22】LENNON A M, RAMESH K T. A technique measuring the dynamic behavior of materials at high temperatures[J].International Journal of Plasticity,1998,14(12):1279-1292.
 
【23】谢若泽,张方举,颜怡霞,等. 高温SHPB试验技术及其应用[J].爆炸与冲击,2005,25(4):330-334.
 
【24】Zwick USA. Schnellzerrei maschinen High-speed Tension Machines[R].[S.l.]:[s.n.],1977.
 
【25】SIGNORET C, POUYET J M, LATAILADE J L. Adaptation of a microcomputer system to a modified SHPB[J].Journal of physics E:Scientific Instruments,1980,13(12):1284-1286.
 
【26】BENDA Y, KEN X. High strain rate behavior of advanced high strength steels for automotive applications[J]. Ironmarking & Steelmaking, 2003, 30(6):33-42.
 
【27】XIAO X R. Dynamic tensile testing of plastic materials[J]. Polymer Testing,2008,27(2):164-178.
 
【28】LI J, FANG X. Stress wave analysis and optical force measurement of servo-hydraulic machine for high strain rate testing[J]. Experimental Mechanics, 2014,54(8):1497-1501.
 
【29】XIA Y, ZHU J, WANG K, et al. Design and verification of a strain gauge based load sensor for medium-speed dynamic tests with a hydraulic test machine[J]. International Journal of Impact Engineering, 2016,88:139-152.
 
【30】LI J, FANG X F. Numerical stress wave analysis in LS-DYNA and force measurement at strain rates up to 1000 s-1 of a high speed tensile machine[J]. Experimental Mechanics, 2014,54(8):1497-1501.
 
【31】尹斌. 面向汽车碰撞安全性能开发的材料动态测试及仿真方法研究[R].重庆:中国汽车工程学会, 2015.
 
【32】ALEKSANDER K.22th international forum for materials testing:Testing solutions for the automotive industry[R]. Ulm:Zwick, 2013.
 
【33】JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rate and high temperatures[C]//The Seventh International Symposium. Netherlands:IBS, 1983:541-547.
 
【34】COWPER G R,SYMONDS P S. Strain hardening and strain rate effects in the impact loading of cantilever beams[J]. Small Business Economics, 1957, 31(3):235-263.
 
【35】SAMANTARAY D, MANDAL S, BORAH U, et al. A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel[J]. Materials Science and Engineering A, 2009, 526(1):1-6.
 
【36】KLEPACZKO J R. A practical stress-strain-strain-rate temperature constitutive relation of the powerform[J]. Journal of Mechanical Working Technology, 1987, 15(2):143-165.
 
【37】JONAS J,SELLARS C,TEGART W,et al.Strength and structure under hot working condition[J].International Metal Reviews,1969,130(14):1-4.
 
【38】SHI H,MCLAREN A,SELLARS C,et al.Constitutive equation for high temperature flow stress of aluminum alloys[J]. High Temperature Materials & Processed, 2015, 13(7):210-216.
 
【39】CADY C M. High Strenght Steel Stamping Design Manual[M]. Michigan:Auto/steel Partnership,1999:7-10.
 
【40】XU K, WONG C, YAN B, et al. A high strain rate constitutive model for high strength steels:2003-01-0260[R]. Detroit:SAE, 2003.
 
【41】ZERILLI F J, AMSTRONG R W. Dislocation mechanica-based constitutive relations for material dynamic calculations[J]. Journal of Applied Physics, 1987, 61(5):1816-1825.
 
【42】ZHAO Y, MA M T, WAN X M, et al. The development of data processing software for dynamic tension of materials[C]//Proceedings of The 2nd International Conference on Advanced High Strength Steel and Press Hardening. Changsha:WSPC, 2015:126-133.
 
【43】SPEER J G, MATLOCK D K, COOMAN B C D, et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Materialia, 2003, 51(9):2611-2622.
 
【44】MILLER R L. Ultrafine-grained microstructure and mechanical properties of alloy steels[J]. Metallurgical Transaction,1972,3(4):905-912.
 
【45】韩启航,张玉龙,王利.冷轧中Mn-TRIP钢的机理与研发进展[J].宝钢技术,2015(4):9-17.
 
【46】BHADESHIA H K D H. TRIP-asssited steels[J]. Issij International, 2007,42(9):319-322.
 
【47】BHADESHIA H K D H. Posco Lectures:The Banite Reaction[EB/OL].[2017-03-15]. https://www.phase-trans.msm.cam.ac.uk/2007/POSCO_Bainite_Notes.pdf?origin=publication_detail.
 
【48】YI H L, CHEN P, WANG G, et al. δ-TRIP steel:Physical and mechanical metallurgy[J]. Enginnering Sciences, 2004, 2:14-19.
 
【49】CHATFIED D A, ROTE R R. Strain rate effects on the properties of high strength low alloy steels:No.740177[R].[S.l.]:[s.n.], 1974.
 
【50】SHI M, MEULEMAN. Strain rate sensitivity of automotive steels:No. 920245[R].[S.l.]:SAE,1992.
 
【51】XU K, ARSENAULT K J. High temperature deformation of NiAl matrix composites[J]. Acta Materialia,1999, 47(10):3023-3040.
 
【52】KANTZ S, BLECK W, PAPAMANTELLOS K. The influence of test temperature on the mechanical properties and formability of cold rolled low and high alloyed TRIP steels[C]//Proceedings of the 20th Biennial congress。[S.l.]:My Science Work, 1998.
 
【53】韦习成,李麟,付仁钰.Si-Mn系TRIP钢高速冲击拉伸时相变过程的应变率相关性[J],特殊钢,2002,23(增):10-13.
 
【54】王学双,曹广祥,张义和.DP780钢应变率敏感特性研究及本构方程的建立[J],汽车工艺与材料,2014(3):48-51.
 
【55】田成达.DP780高强钢动态力学行为研究[D].上海:上海交通大学,2008.
 
【56】ZHANG J P, FANG G, JIN Q S, et al. Mechanical properties and microstructure of DP steel sheets under dynamic loads[C]//Proceedings of The 2nd International Conference on Advanced High Strength Steel and Press Hardening.Changsha:WSPC,2015:217-223.
 
【57】POSCO. 2011POSCO Global EVI forum:Automotive steel data book[R].[S.l.]. POSCO, 2011:58.
 
【58】MA M T, CHEN G, MA Y H, et al.The development and application research of light weight heat treated B-grade bullet proof steel[J]. Engineering,2014,12(5):2-7.
 
【59】MA M T, CHEN G, MA Y H, et al.The Development and application research of light weight heat treated C-grade bullet proof steel[J].Advanced Materials Research, 2015,1063(5):21-27.
 
【60】MA M T, ZHANG J W, ZHANG J P. Numerical analysis on bullet penetration resistance of heat treated lightweight C-grade bullet proof steel plates[J]. Advanced Materials Research, 2015, 1063(5):257-263.
 
【61】MA M T, ZHANG J W, ZHANG J P. Numerical analysis on the shoot resistance of heat treated lightweight B-grade bullet proof steel plates[J]. Engineering, 2014,12(5):12-20.
 
【62】CURTZE S, KUOKKALA V T. Dependence of tensile deformation behavior of TWIP steels on stacking fault energy temperature and strain rate[J]. Acta Materialia.2010,58(15):5129-5141.
 
【63】HSU C H,LEE S C,WANG L L, et al.The high strain-rate fracture behaviors of gray iron under compressive loading[J]. Materials Chemistry and Physics, 2002,73(2/3):174-178.
 
【64】SAHU P, CURTZE S, DAS A, et al.Stability of austenite and quasi-adiabatic heating during high-strain-rate deformation of twinning-induced plasticity steels[J]. Scripta Materialia,2010,62(1):5-8.
 
【65】SI W H, JI J H, PARK K T. Effects of Al addition on high strain rate deformation of fully austenitic high Mn steels[J]. Materials Science and Engineering A,2011,528(24):7267-7275.
 
【66】熊志平,刘界平,辜蕾钢,等.不同热处理状态下Fe-30Mn-3Si-4Al TWIP钢的动态力学性能[J].中国冶金,2012, 22(增1):312-316.
 
【67】陈盛良.不同退火温度和应变速率对Fe-20Mn-0.6C TWIP钢拉伸性能的影响[D].沈阳:东北大学,2013.
 
【68】张俊平,段先锋,史子木,等.温度及应变速率对TWIP钢拉伸性能的影响[J].机械工程材料, 2015,39(5):4-9.
 
【69】秦小梅,陈礼清,邓伟,等.应变速率对TWIP钢Fe-23Mn-2Al-0.2C力学性能的影响[J].材料研究学报,2011,25(3):278-282.
 
【70】GRASSEL O, KRUGER L,FROMMEYER G, et al. High strength Fe-Mn-(Al,Si) TRIP/TWIP steels development-properties-application[J]. International Journal of Plasticity, 2000, 16(9):1391-1409.
 
【71】熊荣刚.TWIP钢在不同应变速率下的应变行为研究[D].上海:上海大学,2008.
 
【72】REED-HILL R E.The inhomogeneity of plastic deformation[M].Ohio:ASM Metals Park,1971:285-286.
 
【73】唐正友,吴志强,昝娜,等.高锰TRIP/TWIP效应共生钢高速变形过程中的组织演变及变形行为[J].金属学报,2011,47(11):1426-1433.
 
【74】吴志强,唐正友,李华英,等.应变速率对高Mn TRIP/TWIP钢组织演变和力学行为的影响[J].金属学报,2012,48(5):593-600.
 
【75】MATLOCK D K,BRÄUTIGAM V E, SPEER J G.Application of the quenching and partitioning(Q&P)process to a medium-carbon, high-Si microalloyed bar steel[J].Materials Science Forum, 2013, 432(2):1089-1094.
 
【76】刘超,王磊,刘杨.应变速率对Q&P钢拉伸变形行为的影响[J],特钢技术,2012,18(3):18-22.
 
【77】WANG X D, ZHONG N, RONG Y H, et al. Novel ultrahigh-strength nanolath martensitic steel by quenching-partitioning-tempering process[J]. Journal of Materials Research, 2009, 24(1):260-267.
 
【78】WANG X D, GUO Z H, RONG Y H. Mechanism exploration of an ultrahigh strength steel by quenching-partitioning-tempering process[J]. Materials Science and Engineering A, 2011, 529(1):35-40.
 
【79】CABALLERO F G, BHADESHIA H K D H, MAWELLA K J A, et al. Very strong low temperature bainite[J]. Materials Science and Technology, 2002, 18(3):279-284.
 
【80】BHADESHIA H K D H. High performance bainitic steels[J]. Materials Science Forum, 2005, 500/501:63-74.
 
【81】GARCIA-MATEO C, CABALLERO F G, BHADESHIA H K D H. Mechanical properties of low-temperature bainite[J]. Materials Science Forum, 2005, 500/501:495-502.
 
【82】戎咏华. 先进超高强度-高塑性Q-P-T钢[J]. 金属学报, 2011, 47(12):1483-1489.
 
【83】王颖.先进高强塑性Q-P-T钢增塑机制及其动态力学性能[D].上海:上海交通大学,2012.
 
【84】PYCHMINTSEV I Y, SAVRAL R A, COOMAN B C D, et al. International Conference On TRIP-Aided High Strength Ferrous Alloys[C]. Belgium:Ghent, 2002:299-302.
 
【85】韦习成. 高强度低合金Si-Mn系TRIP钢的动态拉伸性能[D].上海:上海大学, 2002.
 
【86】WEI X C, LI L, FU R Y, et al. On the tensile mechanical property of Si-Mn TRIP Steels at high strain rate[J]. Acta Metallurgica Sinica (English Letters),2002,15(3):285-294.
 
【87】WEI X C, FU R Y, LI L. Tensile deformation behavior of cold-rolled TRIP-aided steels over large range of strain rates[J]. Materials Science and Engineering A, 2007, 465(1):260-266.
 
【88】LIU W H,HE Z T,CHEN Y Q, et al. Dynamic mechanical properties and constitutive equations of 2519A aluminum alloy[J]. Transactions of Nonferrous Metal Society of China, 2014, 24(7):2179-2186.
 
【89】刘再德,王冠,冯银成,等,6061铝合金高应变速率本构参数研究[J].矿冶工程,2011,31(6):120-123.
 
【90】SMERD R, WINKLER S, SALISBURY C, et al. High strain rate tensile testing of automotive aluminum alloy sheet[J]. International Journal of Impact Engineering, 2005,32(1):541-560.
 
【91】LINDHOLM U S, BESSEY R L, SMITH G V. Effects of strain rate on yield strength, tensile strength and elongation of three aluminum alloys[J]. Journal Material, 1971, 6(1):119-133.
 
【92】OOSTERKAMP L, IVANKOVIC A, VENIZELOS G.High strain rate properties of the selected aluminium alloys[J]. Material Science & Engeering A, 2000, 278(1/2):225-235.
 
【93】AVEDSIAN M M, BAKER H. ASM specialty handbook:Magnesium and magnesium alloys[M]. Materials Park:ASM International, 1999:1-11.
 
【94】LI N. Workshop on China-America automotive materials:Design and manufacture of magnisym compontents for autompbile application[R]. Detroit:[s.n.], 2003.
 
【95】KIM C H. POSCO Globle EVI forum:POSCO magnesium business[R].[S.l.]:POSCO, 2008.
 
【96】YU H, YU H S, KIM Y M, et al. Hot deformation behavior and process maps of Mg-Zn-Cu-Zr magnesium alloy[J].Transactions of Nonferrous Metals Society of China, 2013, 23(3):756-764.
 
【97】GALIYEV A, KAIBYSHEV R, GOTTSTEIN G. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60[J]. Acta Materialia, 2001, 49(7):1199-1207.
 
【98】GALIYEV A, SITDIKOV O, KAIBYSHEV R. Deformation behavior and controlling mechanisms for plastic flow of magnesium and magnesium alloy[J]. Materials Transactions, 2003, 44(4):426-435.
 
【99】YANG Y Q, LI B C, ZHANG Z M. Flow stress of wrought magnesium alloys during hot compression deformation at medium and high temperatures[J]. Materials Science and Engineering A, 2009, 499(1/2):238-241.
 
【100】WU Y Z, YAN H G, ZHU S Q, et al. Flow behavior and microstructure of ZK60 magnesium alloy compressed at high strain rate[J].Transaction of Nonferrous Metals Society of China, 2014,24(4):930-939.
 
【101】毛萍莉,刘正,王长义,等.高应变速率下AZ31B镁合金的压缩变形组织[J].中国有色金属学报,2009,19(5):816-820.
 
【102】申利权,杨旗,靳丽,等.AZ31B镁合金在高应变速率下的热压缩变形行为和微观组织演变[J],中国有色金属学报,2014,24(9):2195-2204.
 
【103】SAKAI T, JONAS J J. Overview no. 35 dynamic recrystallization:Mechanical and microstructural considerations[J]. Acta Metallurgica,1984,32(2):189-209.
 
相关信息
   标题 相关频次
 铝合金汽车板性能及其应用的研究进展
 4
 铌钒微合金化对22MnB5热成形钢显微组织与性能的影响
 4
 微合金化热成形钢开发应用进展及展望
 4
 AZ31B镁合金/6061铝合金异质金属连接件整体微弧氧化膜的制备及其结构
 3
 2219铝合金热压缩时的流变应力本构方程
 2
 6061铝合金上硅烷膜的制备与性能
 2
 7050铝合金的表面增压喷丸纳米化
 2
 9S75铝合金的电化学腐蚀行为及阳极氧化工艺
 2
 A356铝合金车轮T6热处理工艺的优化
 2
 AZ31B型镁合金表面钛盐化学转化膜
 2
 AZ31和AZ61镁合金在MgSO4溶液中的电化学行为对比
 2
 AZ31镁合金表面沉积类金刚石薄膜在Hank′s体液中的腐蚀行为
 2
 AZ31镁合金表面钙磷涂层在Hank′s液中的腐蚀行为
 2
 AZ31镁合金的阳极氧化新工艺
 2
 AZ31镁合金在不同电解液中的电化学行为
 2
 AZ91D镁合金Ni-P/CeO2化学复合镀层的耐蚀性
 2
 AZ91D镁合金表面化学镀Ni-P-SiC复合镀层的结构与性能
 2
 AZ91D镁合金电弧喷涂铝锌工艺的研究
 2
 AZ91D镁合金激光熔凝层的缺陷
 2
 AZ91镁合金表面微弧氧化膜微观结构的TEM表征
 2
 AZ91镁合金的热压缩变形行为及晶粒细化
 2
 AZ91铸造镁合金缺陷的超声检测技术
 2
 BCAST与肯联铝业研发高强度铝合金 助力汽车轻量化
 2
 JB-W450GL高应变速率冲击拉伸试验机——基于材料碰撞变形吸能特性的评价系统
 2
 LY12M铝合金板同步冷却热拉伸后的组织与性能
 2
 Magnaplate“协和”涂层及其在镁合金上的应用
 2
 Mg-12Gd-3Y-0.5Zr镁合金的不同疲劳行为
 2
 Mg-5Zn-xEr-1.5Nd-0.5Zr(1.1
 2
 pH值对镁合金表面氧化硅溶胶凝胶成膜及膜层性能的影响
 2
 PTFE/7075铝合金镶嵌型自润滑材料的摩擦学行为
 2