搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
超声法制备均匀分布的亚微米级镓铟锡合金液态金属微球
          
Uniformly Distributed Sub-microsized Galinstan Liquid Metal Microspheres Prepared by Ultrasoic Method

摘    要
采用超声法制备了镓铟锡合金(Galinstan)液态金属微球,研究了超声工艺参数对Galinstan微球粒径的影响规律,然后通过控制沉降时间进行多次沉降,得到了均匀分布的亚微米级Galinstan微球。结果表明:Galinstan微球粒径随着超声时间、功率的增加而减小,随着超声温度、溶剂表面张力的增加而增大,通过优化超声工艺参数,可以获得粒径小于2 μm的Galinstan微球;经过多次沉降去除沉降的大粒径微球,可以获得粒径分布范围为0.2~0.8 μm的Galinstan微球,大大提高了微球粒径分布均匀性。
标    签 超声法   液态金属   亚微米级镓铟锡合金微球   粒径   工艺参数   ultrosonic method   liquid metal   sub-microsized Galinstan microsphere   diameter   process parameter  
 
Abstract
Gallium-indium-tin alloy (Galinstan) liquid metal microspheres were prepared by ultrasonic method, and the effects of ultrasonic process parameters on the diameter of Galinstan microspheres were studied. Then, the uniformly distributed sub-microsized Galinstan microspheres were obtained by controlling the settling time. The results show that the diameter of Galinstan microspheres decreased with the increase of ultrasonic time and power, and increased with the increase of ultrasonic temperature and solvent surface tension. By optimizing the ultrasonic process parameters, Galinstan microspheres with the diameter less than 2 μm could be obtained. Galinstan microspheres with a diameter range of 0.2-0.8 μm could be obtained by multiple sedimentation to remove the large-size microspheres. This method could greatly improve the homogeneity of particle diameter distribution of the microspheres.

中图分类号 TB31   DOI 10.11973/lhjy-wl201710002

 
  中国光学期刊网论文下载说明


所属栏目 试验与研究

基金项目 国家自然科学基金资助项目(51525103;11474295)

收稿日期 2017/3/6

修改稿日期

网络出版日期

作者单位点击查看


备注张配同(1990-),男,硕士研究生,主要从事柔性可穿戴设备及传感器研究

引用该论文: ZHANG Peitong,LIU Yiwei,GUO Qiang,LIU Gang,LI Runwei. Uniformly Distributed Sub-microsized Galinstan Liquid Metal Microspheres Prepared by Ultrasoic Method[J]. Physical Testing and Chemical Analysis part A:Physical Testing, 2017, 53(10): 701~706
张配同,刘宜伟,郭强,刘钢,李润伟. 超声法制备均匀分布的亚微米级镓铟锡合金液态金属微球[J]. 理化检验-物理分册, 2017, 53(10): 701~706


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】DICKEY M D. Emerging applications of liquid metals featuring surface oxides[J]. ACS Applied Materials & Interfaces,2014,6(21):18369-18379.
 
【2】DICKEY M D,CHIECHI R C,LARSEN R J,et al.Eutectic gallium-indium (EGaIn):A liquid metal alloy for the formation of stable structures in microchannels at room temperature[J].Advanced Functional Materials,2008,18(7):1097-1104.
 
【3】LIU T Y,SEN P,KIM C J.Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices[J]. Journal of Microelectromechanical Systems,2012,21(2):443-450.
 
【4】ROSSET S,NIKLAUS M,DUBOIS P,et al.Metal ion implantation for the fabrication of stretchable electrodes on elastomers[J].Advanced Functional Materials,2009,19(3):470-478.
 
【5】ZHANG W,OU J Z,TANG S,et al.Liquid metal/metal oxide frameworks[J].Advanced Functional Materials,2014,24(24):3799-3807.
 
【6】SEN P,KIM C J. Microscale liquid-metal switches:A review[J].IEEE Transactions on Industrial Electronics,2009,56(4):1314-1330.
 
【7】LADD C,SO J H,MUTH J,et al. 3D printing of free standing liquid metal microstructures[J].Advanced Materials,2013,25(36):5081-5085.
 
【8】FASSLER A,MAJIDI C.Liquid-phase metal inclusions for a conductive polymer composite[J].Advanced Materials,2015,27(11):1928-1932.
 
【9】BOLEY J W,WHITE E L,KRAMER R K.Mechanically sintered gallium-indium nanoparticles[J]. Advanced Materials,2015,27(14):2355-2360.
 
【10】TANG S Y,ZHU J Y,SIVAN V,et al.Creation of liquid metal 3D microstructures using dielectrophoresis[J]. Advanced Functional Materials,2015,25(28):4445-4452.
 
【11】ZOU L,WITHAYACHUMNANKUL W,SHAH C M,et al.Dielectric resonator nanoantennas at visible frequencies[J].Optics Express,2013,21(1):1344-1352.
 
【12】HASHIMOTO M,MAYERS B,GARSTECKI P,et al.Flowing lattices of bubbles as tunable,self-assembled diffraction gratings[J]. Small,2006,2(11):1292-1298.
 
【13】MOHAMMED M,XENAKIS A,DICKEY M.Production of liquid metal spheres by molding[J].Metals,2014,4(4):465-476.
 
【14】THELEN J,DICKEY M D,WARD T. A study of the production and reversible stability of EGaIn liquid metal microspheres using flow focusing[J]. Lab on a Chip,2012,12(20):3961-3967.
 
【15】BROWN E N,KESSLER M R,SOTTOS N R,et al.In situ poly (urea-formaldehyde) microencapsulation of dicyclopentadiene[J]. Journal of Micro-encapsulation,2003,20(6):719-730.
 
【16】TANG S Y,AYAN B,NAMA N,et al.On-chip production of size-controllable liquid metal microdroplets using acoustic waves[J].Small,2016,12(28):3861-3869.
 
【17】杜煜.激光衍射法测定超细氢氧化铝粒度中分散条件的控制[J].理化检验-物理分册,2013,49(1):46-49.
 
【18】DELMAS T,PIRAUX H,COUFFIN A C,et al.How to prepare and stabilize very small nanoemulsions[J].Langmuir,2011,27(5):1683-1692.
 
【19】BANG J H,SUSLICK K S. Applications of ultrasound to the synthesis of nanostructured materials[J]. Advanced Materials,2010,22(10):1039-1059.
 
【20】叶菁.一种测定液体表面张力系数的新方法[J].理化检验-物理分册,2014,50(12):886-889.
 
相关信息
   标题 相关频次
 12Cr13钢预热处理工艺参数优化
 2
 780DP钢与DC04普碳钢的窄搭接焊接
 2
 AM80镁合金板材热挤压工艺的数值模拟
 2
 DOGAL 800DP镀锌高强钢数控CO2激光焊接工艺参数的优化
 2
 Nb3Sn超导线材室温拉伸试验方法
 2
 Ti-15-3合金经冷轧和时效后的显微组织及力学性能
 2
 Ti-15-3合金冷变形纳米组织的热稳定性
 2
 爆炸焊接复合板的超声C扫描成像
 2
 大层厚下选区激光熔化成形316L不锈钢工艺的优化
 2
 腐蚀管道剩余强度的评价方法及剩余寿命预测
 2
 高速钢大截面锻材的生产工艺优化
 2
 高温高残留聚环三膦腈-芳酰胺材料的合成与热性能
 2
 高温扩散退火对3Cr2NiMnMo钢大型模块组织和硬度均匀性的影响
 2
 工业CT检测中主要工艺参数定量取值方法
 2
 工艺参数对6 mm厚5052铝合金板搅拌摩擦焊接头的影响
 2
 工艺参数对X100管线钢中M-A岛和力学性能的影响
 2
 工艺参数对铝青铜表面激光熔覆镍基合金温度场的影响
 2
 工艺参数对锌合金表面化学镀镍速率的影响
 2
 硅烷化处理工艺参数对建筑用6061铝合金耐蚀性的影响
 2
 磺化聚醚醚酮磺化度的测定及其对质子交换膜性能的影响
 2
 基于5G通信与高速拍照技术的喷丸强化仿真试验验证
 2
 基于正交试验法的H13钢渗氮工艺优化
 2
 激光熔覆技术在轴类零件再制造过程中的应用现状
 2
 激光选区熔化成形TC4钛合金显微组织与性能的研究进展
 2
 搅拌摩擦焊工艺参数对2198铝锂合金焊缝成形及接头力学性能的影响
 2
 搅拌摩擦焊工艺参数对LY12铝合金焊缝金属流动形态的影响
 2
 搅拌针形状对2A14铝合金搅拌摩擦焊接头组织和拉伸性能的影响
 2
 金相样品制备影响因素及金相制样实例
 2
 聚环三磷腈-砜微球/环氧树脂复合涂层的摩擦学性能
 2
 铝合金车门内板挤压铸造工艺优化的有限元模拟
 2