搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
变形镁合金疲劳行为的研究现状
          
Research Progress on Fatigue Behavior of Wrought Magnesium Alloy

摘    要
从疲劳循环变形响应行为、疲劳寿命、疲劳裂纹萌生与扩展等方面,综述了变形镁合金疲劳行为的研究现状,重点介绍了加载条件、环境、表面状态等对变形镁合金疲劳性能的影响,指出添加稀土元素,进行喷丸、表面滚压处理和合理的热处理可提高变形镁合金的疲劳强度,延长疲劳寿命,并分析了各种方法的优劣。对变形镁合金疲劳研究的发展方向进行了展望。
标    签 变形镁合金   疲劳性能   循环变形   疲劳寿命   wrought magnesium alloy   fatigue property   cyclic deformation   fatigue life  
 
Abstract
Research progress on the fatigue behavior of wrought magnesium alloys is summarized on the basis of fatigue cyclic deformation response, fatigue life, fatigue crack initiation and propagation, etc. The effects of loading condition, environment and surface state on the fatigue behavior of wrought magnesium alloys are described emphatically. It is proposed that the methods including rare earth elements addition, shot peening, surface rolling and appropriate heat treatment can improve the fatigue strength and prolong fatigue life of wrought magnesium alloys. The advantages and disadvantages of these methods are analyzed. The development of fatigue research on wrought magnesium alloys is prospected.

中图分类号 TG146.2   DOI 10.11973/jxgccl201712001

 
  中国光学期刊网论文下载说明


所属栏目 综述

基金项目 国家重点研发计划项目(2016YFB0701200)

收稿日期 2016/12/30

修改稿日期 2017/10/28

网络出版日期

作者单位点击查看

备注宋晓村(1990-),女,山东潍坊人,硕士

引用该论文: SONG Xiaocun,ZHAO Dongqing,ZHOU Jixue,YANG Yuansheng. Research Progress on Fatigue Behavior of Wrought Magnesium Alloy[J]. Materials for mechancial engineering, 2017, 41(12): 1~6
宋晓村,赵东清,周吉学,杨院生. 变形镁合金疲劳行为的研究现状[J]. 机械工程材料, 2017, 41(12): 1~6


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】阎峰云, 张玉海. 镁合金的发展及其应用[J]. 现代制造技术与装备, 2007(4):13-15.
 
【2】丁文江, 靳丽, 吴文祥,等. 变形镁合金中的织构及其优化设计[J]. 中国有色金属学报, 2011, 21(10):2371-2381.
 
【3】HUPPMANN M, LENTZ M, CHEDID S,et al. Analyses of deformation twinning in the extruded magnesium alloy AZ31 after compressive and cyclic loading[J]. Journal of Materials Science, 2011, 46(4):938-950.
 
【4】WU W, LEE S Y, PARADOWSKA A M,et al. Twinning-detwinning behavior during fatigue-crack propagation in a wrought magnesium alloy AZ31B[J]. Materials Science and Engineering A, 2012, 556:278-286.
 
【5】DONG S, JIANG Y, DONG J,et al. Cyclic deformation and fatigue of extruded ZK60 magnesium alloy with aging effects[J]. Materials Science and Engineering A,2014,615:262-272.
 
【6】PARK S H, HONG S G, BANG W, et al. Effect of anisotropy on the low-cycle fatigue behavior of rolled AZ31 magnesium alloy[J]. Materials Science and Engineering A, 2010, 527(3):417-423.
 
【7】WANG C, LUO T J, ZHOU J X, et al. Anisotropic cyclic deformation behavior of extruded ZA81M magnesium alloy[J]. International Journal of Fatigue, 2017, 96:178-184.
 
【8】MIRZA F A, CHEN D L, LI D J, et al. Low cycle fatigue of an extruded Mg-3Nd-0.2Zn-0.5Zr magnesium alloy[J]. Materials & Design, 2014, 64:63-73.
 
【9】YIN S M, LI S X. Low-cycle fatigue behaviors of an as-extruded Mg-12%Gd-3%Y-0.5%Zr alloy[J]. Journal of Materials Science & Technology, 2013, 29(8):775-780.
 
【10】MOKDAD F, CHEN D L. Strain-controlled low cycle fatigue properties of a rare-earth containing ZEK100 magnesium alloy[J]. Materials & Design, 2015, 67:436-447.
 
【11】PARK S H, HONG S G, LEE B H, et al. Low-cycle fatigue characteristics of rolled Mg-3Al-1Zn alloy[J]. International Journal of Fatigue, 2010, 32(11):1835-1842.
 
【12】BEGUM S, CHEN D L, XU S, et al. Effect of strain ratio and strain rate on low cycle fatigue behavior of AZ31 wrought magnesium alloy[J]. Materials Science and Engineering A, 2009, 517(1):334-343.
 
【13】YIN S M, YANG H J, LI S X, et al. Cyclic deformation behavior of as-extruded Mg-3%Al-1%Zn[J]. Scripta Materialia, 2008, 58(9):751-754.
 
【14】MATSUZUKI M, HORIBE S. Analysis of fatigue damage process in magnesium alloy AZ31[J]. Materials Science and Engineering A, 2009, 504(1):169-174.
 
【15】HASEGAWA S, TSUCHIDA Y, YANO H, et al. Evaluation of low cycle fatigue life in AZ31 magnesium alloy[J]. International Journal of Fatigue,2007,29(9):1839-1845.
 
【16】YU Q, ZHANG J, JIANG Y, et al. Effect of strain ratio on cyclic deformation and fatigue of extruded AZ61A magnesium alloy[J]. International Journal of Fatigue, 2012, 44:225-233.
 
【17】XIONG Y, JIANG Y. Cyclic deformation and fatigue of rolled AZ80 magnesium alloy along different material orientations[J]. Materials Science and Engineering A, 2016, 677:58-67.
 
【18】UEMATSU Y, KAKIUCHI T, TAMADA K, et al. EBSD analysis of fatigue crack initiation behavior in coarse-grained AZ31 magnesium alloy[J]. International Journal of Fatigue, 2016, 84:1-8.
 
【19】YANG F, YIN S M, LI S X, et al. Crack initiation mechanism of extruded AZ31 magnesium alloy in the very high cycle fatigue regime[J]. Materials Science and Engineering A, 2008, 491(1/2):131-136.
 
【20】MORITA S, FUJIWARA S, HORI T, et al. Microstructure dependence of fatigue crack propagation behavior in wrought magnesium alloy[J]. Frattura ed Integrita Strutturale, 2016, 35:82-87.
 
【21】DUAN G S, WU B L, DU X H, et al. The cyclic frequency sensitivity of low cycle fatigue (LCF) behavior of the AZ31B magnesium alloy[J]. Materials Science and Engineering A, 2014, 603:11-22.
 
【22】WANG C, LUO T, YANG Y. Low cycle fatigue behavior of the extruded AZ80 magnesium alloy under different strain amplitudes and strain rates[J]. Journal of Magnesium and Alloys, 2016, 4(3):181-187.
 
【23】武艳军. AZ31镁合金疲劳行为研究[D].南京:南京理工大学,2012.
 
【24】XIONG Y, YU Q, JIANG Y. Cyclic deformation and fatigue of extruded AZ31B magnesium alloy under different strain ratios[J]. Materials Science and Engineering A, 2016, 649:93-103.
 
【25】MIRZA F A, CHEN D L, LI D J, et al. Effect of strain ratio on cyclic deformation behavior of a rare-earth containing extruded magnesium alloy[J]. Materials Science and Engineering A, 2013, 588:250-259.
 
【26】SHIOZAWA K, IKEDA A, FUKUMORI T. Effect of stress ratio and loading mode on high cycle fatigue properties of extruded magnesium alloys[J]. Advanced Materials Research, 2014, 891/892:557-562.
 
【27】LIN Y C, CHEN X M, LIU Z H, et al. Investigation of uniaxial low-cycle fatigue failure behavior of hot-rolled AZ91 magnesium alloy[J]. International Journal of Fatigue, 2013, 48:122-132.
 
【28】ISHIHARA S, TANEGUCHI S, SHIBATA H, et al. Anisotropy of the fatigue behavior of extruded and rolled magnesium alloys[J]. International Journal of Fatigue, 2013, 50:94-100.
 
【29】LV F, YANG F, DUAN Q Q, et al. Fatigue properties of rolled magnesium alloy (AZ31) sheet:Influence of specimen orientation[J]. International Journal of Fatigue, 2011, 33(5):672-682.
 
【30】PARK S H, HONG S G, YOON J, et al. Influence of loading direction on the anisotropic fatigue properties of rolled magnesium alloy[J]. International Journal of Fatigue, 2016, 87:210-215.
 
【31】ROOSTAEI A A, JAHED H. Role of loading direction on cyclic behaviour characteristics of AM30 extrusion and its fatigue damage modelling[J]. Materials Science and Engineering A, 2016, 670:26-40.
 
【32】CULBERTSON D, JIANG Y. An experimental study of the orientation effect on fatigue crack propagation in rolled AZ31B magnesium alloy[J]. Materials Science and Engineering A, 2016, 676:10-19.
 
【33】LI Q, YU Q, ZHANG J, et al. Effect of strain amplitude on tension-compression fatigue behavior of extruded Mg6Al1ZnA magnesium alloy[J]. Scripta Materialia, 2010, 62(10):778-781.
 
【34】CHEN X M, LIN Y C, CHEN J. Low-cycle fatigue behaviors of hot-rolled AZ91 magnesium alloy under asymmetrical stress-controlled cyclic loadings[J]. Journal of Alloys and Compounds, 2013, 579:540-548.
 
【35】ROZALI S, MUTOH Y, NAGATA K. Effect of frequency on fatigue crack growth behavior of magnesium alloy AZ61 under immersed 3.5mass% NaCl environment[J]. Materials Science and Engineering A, 2011, 528(6):2509-2516.
 
【36】UEMATSU Y, KAKIUCHI T, NAKAJIMA M, et al. Fatigue crack propagation of AZ61 magnesium alloy under controlled humidity and visualization of hydrogen diffusion along the crack wake[J]. International Journal of Fatigue, 2014, 59:234-243.
 
【37】ZENG R C, HAN E H, KE W. Fatigue and corrosion fatigue of magnesium alloys[J]. Materials Science Forum, 2005, 488/489:721-724.
 
【38】UEMATSU Y, TOKAJI K, OHASHI T. Corrosion fatigue behavior of extruded AZ80, AZ61, and AM60 magnesium alloys in distilled water[J]. Strength of Materials, 2008, 40(1):130-133.
 
【39】NAN Z Y, ISHIHARA S, GOSHIMA T. Corrosion fatigue behavior of extruded magnesium alloy AZ31 in sodium chloride solution[J]. International Journal of Fatigue, 2008, 30(7):1181-1188.
 
【40】SAJURI Z B, MIYASHITA Y, MUTOH Y. Effects of humidity and temperature on the fatigue behaviour of an extruded AZ61 magnesium alloy[J]. Fatigue & Fracture of Engineering Materials & Structures, 2005, 28(4):373-379.
 
【41】ZENG R C, HAN E H, KE W. Effect of temperature and relative humidity on fatigue crack propagation behavior of AZ61 magnesium alloy[J]. Materials Science Forum, 2007, 546/547/548/549:409-412.
 
【42】GRINBERG N M, SERDYUK V A, OSTAPENKO I L, et al. Effect of low temperature on fatigue failure of magnesium alloy MA12[J]. Materials Science, 1979, 15(1):17-21.
 
【43】IMANDOUST A, BARRETT C D, AL-SAMMAN T, et al. A review on the effect of rare-earth elements on texture evolution during processing of magnesium alloys[J]. Journal of Materials Science, 2017, 52(1):1-29.
 
【44】ZHU R, CAI X, WU Y, et al. Low-cycle fatigue behavior of extruded Mg-10Gd-2Y-0.5Zr alloys[J]. Materials & Design, 2014, 53:992-997.
 
【45】MOKHTARISHIRAZABAD M, BOUTORABI S M A, AZADI M,et al. Effect of rare earth elements on high cycle fatigue behavior of AZ91 alloy[J]. Materials Science and Engineering A, 2013, 587:179-184.
 
【46】MIRZA F A, WANG K, BHOLE S D,et al. Strain-controlled low cycle fatigue properties of a rare-earth containing ME20 magnesium alloy[J]. Materials Science and Engineering A, 2016, 661:115-125.
 
【47】WANG F, DONG J, FENG M,et al. A study of fatigue damage development in extruded Mg-Gd-Y magnesium alloy[J]. Materials Science and Engineering A, 2014, 589:209-216.
 
【48】MIRZA F A, CHEN D L, LI D J, et al. Cyclic deformation behavior of a rare-earth containing extruded magnesium alloy:Effect of heat treatment[J]. Metallurgical and Materials Transactions A, 2015, 46(3):1168-1187.
 
【49】ADAMS J F, ALLISON J E, JONES J W. The effects of heat treatment on very high cycle fatigue behavior in hot-rolled WE43 magnesium[J]. International Journal of Fatigue, 2016, 93:372-386.
 
【50】DONG J, LIU W C, SONG X, et al. Influence of heat treatment on fatigue behaviour of high-strength Mg-10Gd-3Y alloy[J]. Materials Science and Engineering A, 2010, 527(21/22):6053-6063.
 
【51】LIU W C, DONG J, ZHANG P, et al. High cycle fatigue behavior of as-extruded ZK60 magnesium alloy[J]. Journal of Materials Science, 2009, 44(11):2916-2924.
 
【52】ZHANG P, LINDEMANN J, LEYENS C. Influence of shot peening on notched fatigue strength of the high-strength wrought magnesium alloy AZ80[J]. Journal of Alloys and Compounds, 2010, 497(1):380-385.
 
【53】ZINN W, SCHOLTES B. Mechanical surface treatments of lightweight materials-Effects on fatigue strength and near-surface microstructures[J]. Journal of Materials Engineering and Performance, 1999, 8(2):145-151.
 
【54】ZHANG P, LINDEMANN J. Effect of roller burnishing on the high cycle fatigue performance of the high-strength wrought magnesium alloy AZ80[J]. Scripta Materialia, 2005, 52(10):1011-1015.
 
相关信息
   标题 相关频次
 AZ31B镁合金/6061铝合金异质金属连接件整体微弧氧化膜的制备及其结构
 6
 一种AZ80铸造镁合金用高效微弧氧化工艺
 6
 6061-7075异种铝合金搅拌摩擦焊接件表面整体陶瓷防护膜的制备
 4
 1Cr11Ni2W2MoV钢高压涡轮轴裂纹形成原因
 2
 1Cr18Ni9Ti不锈钢管焊接接头断裂原因分析
 2
 2E12-T3铝合金蒙皮环向对接结构的疲劳性能
 2
 2E12铝合金的疲劳性能与裂纹扩展行为
 2
 30CrNiMo8合金钢的弯曲微动疲劳特性
 2
 38MnVS非调质钢汽车半轴的研制
 2
 5754铝合金钨极氩弧焊和搅拌摩擦焊接头的疲劳性能及断裂机理
 2
 60Si2MnA铁轨铺设用弹条疲劳试验断裂分析
 2
 63Sn-37Pb和Sn-3Ag-0.5Cu合金钎料的扭转低周疲劳性能
 2
 7050-T7451铝合金不同结构耳片疲劳裂纹的扩展行为
 2
 Al-12Si-CuNiMg铸造铝硅合金在多轴加载下的疲劳性能
 2
 B级铸钢与Q450NQR1钢焊接接头的组织与性能
 2
 C70S6非调质钢胀断连杆的制造工艺及其实物质量
 2
 GH738高温合金涡轮机匣开裂原因
 2
 Q420D高强钢横向十字焊接接头疲劳寿命数值模拟与试验验证
 2
 S135钻杆钢的单轴疲劳性能对比
 2
 S135钻杆钢在H2S环境中的腐蚀疲劳行为
 2
 T6态7A09铝合金搅拌摩擦焊接接头的疲劳性能及组织
 2
 T700/QY8911缝合复合材料层合板的拉伸与疲劳性能
 2
 TC17钛合金圆形开孔平板试样疲劳性能差异原因
 2
 TC4钛合金疲劳寿命不确定度评定
 2
 TRIP钢板电阻点焊接头的疲劳性能
 2
 ZL108铸造铝合金拉压疲劳寿命曲线模型的建立与应用
 2
 爆炸喷涂Cr3C2-NiCr涂层及其对2Cr10MoVNbN钢疲劳性能的影响
 2
 补焊道次对Q345B低合金钢焊接接头疲劳性能的影响
 2
 不同材料压印接头的拉剪性能和疲劳性能
 2
 不同取向镍基单晶高温合金在980 ℃下的低周循环变形行为
 2