扫一扫 加微信
首页 > 期刊论文 > 论文摘要
超声表面滚压加工对Ti-6Al-4V合金显微组织及表面完整性的影响
          
Effects of Ultrasonic Surface Rolling Process on Microstructure and Surface Integrity of Ti-6Al-4V Alloy

摘    要
采用"回"字形加工路径对退火态Ti-6Al-4V合金进行超声表面滚压加工(USRP),使用光学显微镜、透射电镜、显微维氏硬度计、X射线残余应力分析仪、表面三维形貌仪等设备对USRP后合金的显微组织和表面完整性进行表征。结果表明:USRP后Ti-6Al-4V合金表面形成了厚度约300 μm的塑性变形层,塑性变形层的表面为等轴纳米晶层,次表面为晶粒取向一致的长条状纳米片晶层;USRP后Ti-6Al-4V合金的显微硬度最高达到390 HV,表面粗糙度由0.76 μm减小为0.23 μm。随着距表面距离的增大,合金的残余压应力先增大后减小。
标    签 Ti-6Al-4V合金   超声表面滚压   表面粗糙度   残余应力   Ti-6Al-4V alloy   ultrasonic surface rolling process   surface roughness   residual stress  
 
Abstract
The ultrasonic surface rolling process (USRP) was performed on the annealed Ti-6Al-4V alloy using employing the rectangular-ambulatory-plane machining path. The microstructure and surface integrity of Ti-6Al-4V alloy after USRP were characterized by equipments such as optical microscope, transmission electron microscope, vickers indenter, X-ray diffraction residual stress analyzer and surface three-dimensional topography. The results show that a plastic deformation layer with around 300 μm thickness was formed on the surface of Ti-6Al-4V alloy after USRP. The surface of plastic deformation layer was the equiaxial nanocrystal layer and the subsurface was the long strip shaped nanocrystalline laminar layer with the same grain orientation. The maximum mirco-hardness of Ti-6Al-4V alloy was 390 HV and the surface roughness reduced from 0.76 μm to 0.23 μm after USRP. The residual compressive stress of Ti-6Al-4V alloy increased first and then decreased with the increase of distance from surface.

中图分类号 TG146.2   DOI 10.11973/jxgccl201801002

 
  中国光学期刊网论文下载说明


所属栏目 试验研究

基金项目 国家自然科学基金资助项目(51322510,51371082)

收稿日期 2017/2/27

修改稿日期 2017/11/15

网络出版日期

作者单位点击查看

备注蔡振(1991-),男,山东德州人,硕士研究生

引用该论文: CAI Zhen,ZHANG Xiancheng,TU Shantong. Effects of Ultrasonic Surface Rolling Process on Microstructure and Surface Integrity of Ti-6Al-4V Alloy[J]. Materials for mechancial engineering, 2018, 42(1): 7~10
蔡振,张显程,涂善东. 超声表面滚压加工对Ti-6Al-4V合金显微组织及表面完整性的影响[J]. 机械工程材料, 2018, 42(1): 7~10


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】YASUOKA M, WANG P, ZHANG K, et al. Improvement of the fatigue strength of SUS304 austenite stainless steel using ultrasonic nanocrystal surface modification[J]. Surface & Coatings Technology, 2013, 218(1):93-98.
 
【2】NALLAR K, ALTENBERGER I, NOSTER U, et al. On the influence of mechanical surface treatments-deep rolling and laser shock peening-on the fatigue behavior of Ti-6Al-4V at ambient and elevated temperatures[J]. Materials Science & Engineering A, 2003, 355(1/2):216-230.
 
【3】李鹏,刘道新,关艳英,等.喷丸强化对新型7055-T7751铝合金疲劳性能的影响[J]. 机械工程材料, 2015, 39(1):86-89.
 
【4】张志建,姚枚,李金魁,等.喷丸强化件表象疲劳极限优化研究[J]. 机械工程材料, 2003, 27(10):7-10.
 
【5】LU K, LU J. Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach[J]. Journal of Materials Science & Technology, 1999, 15(3):193-197.
 
【6】WONG C C, HARTAWAN A, TEO W K. Deep cold rolling of features on aero-engine components[J]. Procedia CIRP, 2014, 13:350-354.
 
【7】ALTENBERGER I. Deep rolling-The past, the present and the future[C]//International Conference on Shot Peening.[S.l.]:[s.n.], 2005.
 
【8】RÖTTGER K, JACOBS T L, WILCKE G. Deep rolling efficiently increases fatigue life[C]//World Tribology Congress Ⅲ.[S.l.]:[s.n.], 2005.
 
【9】王仁智. 表面喷丸强化机制[J]. 机械工程材料, 1988,12(5):21-25.
 
【10】李伟, 李应红, 何卫锋,等. 激光冲击强化技术的发展和应用[J]. 激光与光电子学进展, 2008, 45(12):15-19.
 
【11】PREVEY P S, SHEPARD M, RAVINDRANATH R A, et al. Case studies of fatigue life improvement using low plasticity burnishing in gas turbine engine applications[C]//Proceeding of ASME Turbo Expo 2003. Georgia:[s.n.], 2003.
 
【12】孙明霞, 梁春华. 低塑性抛光技术在压气机叶片上的发展与应用[J]. 航空制造技术, 2014, 451(7):57-59.
 
【13】PREVEY P S, SHEPARD M J, SMITH P R. The effect of low plasticity burnishing on the HCF performance and FOD resistance of Ti-6Al-4V[C]//6th National Turbine Engine High Cycle Fatigue(HCF) Conference.[S.l.]:[s.n.], 2001.
 
【14】TAO N R, SUI M L, LU J, et al. Surface nanocrystallization of iron induced by ultrasonic shot peening[J]. Nanostructured Materials, 1999, 11(4):433-440.
 
【15】邹途祥, 卫英慧, 侯利锋,等. 纯铝表面机械研磨纳米化后的显微组织和硬度[J]. 机械工程材料, 2009, 33(1):40-43.
 
【16】王宇, 黄敏, 高惠临,等. 表面机械研磨处理对X80管线钢焊接接头组织与性能的影响[J]. 机械工程材料, 2009, 33(8):50-53.
 
【17】LU K, LU J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment[J]. Materials Science & Engineering A, 2004, 375/376/377:38-45.
 
【18】LIU Y, ZHAO X, WANG D. Determination of the plastic properties of materials treated by ultrasonic surface rolling process through instrumented indentation[J]. Materials Science & Engineering A, 2014, 600:21-31.
 
【19】CHOKSHI A H, ROSEN A, KARCH J, et al. On the validity of the Hall-Petch relationship in nanocrystalline materials[J]. Scripta Metallurgica, 1989, 23(10):1679-1683.
 
【20】JANG J S C, CKOCH C C. The Hall-Petch relationship in nanocrystallization iron produced by ball milling[J]. Scripta Metallurgical et Materialia, 1990, 24(8):1599-1604.
 
【21】HUGHESG D, SMITH S D, PANDE C S, et al. Hall-Petch strengthening for the microhardness of twelve nanometer grain diameter electrodeposited nickel[J]. Scripta Metallurgica, 1986, 20(1):93-97.
 
相关信息
   标题 相关频次
 42CrMoA钢的单次喷丸和复合喷丸强化
 4
 表面喷丸处理对车轮辐板腐蚀行为的影响
 4
 不同喷丸强度下镍铝青铜的表面喷丸强化效果
 4
 粉末冶金FGH96镍基高温合金的蠕变-疲劳交互行为
 4
 高温氧化后Ti6Al4V合金渗氧层的微观结构和力学性能
 4
 激光气体氮化原位合成制备TiN/Ti3Al复合涂层及其抗高温冲蚀性能
 4
 喷丸对重载齿轮用18CrNiMo7-6钢抗胶合性能的影响
 4
 喷丸工艺对1Cr11Ni2W2MoV钢螺母表面性能和显微组织的影响
 4
 铣削参数对镍基高温合金FGH4113A加工表面完整性的影响
 4
 钻、铰工艺对铝合金紧固孔件疲劳寿命的影响
 4
 超声表面滚压加工纯钛梯度材料的力学性能反演与有限元分析
 3
 晶界特征分布对316L不锈钢焊接接头腐蚀行为的影响
 3
 汽轮机末级叶片叶根的喷丸强化
 3
 16MnD5钢板焊接件热影响区开裂原因分析
 2
 16MnR钢板焊接对接接头残余应力磁记忆检测研究
 2
 16Mn钢弯管的开裂原因
 2
 17Cr2Ni2Mo钢的表面复合喷丸强化
 2
 18Cr2Ni4WA钢氮化和喷丸强化处理的残余应力及性能
 2
 1Cr18Ni9Ti不锈钢导管开裂原因分析
 2
 2195铝锂合金的化学铣切工艺优化
 2
 2197铝锂合金的化学铣切工艺
 2
 2197铝锂合金化铣抛光工艺及其影响因素
 2
 2A14铝合金去应力热时效的作用
 2
 300M钢热损伤的巴克豪森检测
 2
 304不锈钢薄壁焊管表面残余拉应力的测定及消除
 2
 304不锈钢焊缝附近的点蚀损伤发展规律
 2
 304不锈钢焊管应力腐蚀开裂原因
 2
 30CrMnSiNi2A钢轮轴表面镀硬铬区域开裂的原因及控制措施
 2
 316L奥氏体不锈钢碱液储罐开裂原因
 2
 316L不锈钢板式换热器泄漏原因
 2