扫一扫 加微信
首页 > 期刊论文 > 论文摘要
H2S环境中硫酸盐还原菌对碳钢点蚀行为的影响
          
Effect of Sulfate Reducing Bacteria on Pitting Behavior of Carbon Steel in H2S Environment

摘    要
采用API-RP38培养基培养了从油田污水中提取的硫酸盐还原菌(SRB),并观察了SRB的生长情况,采用扫描电镜(SEM)观察了试样表面SRB的吸附形貌。采用失重方法和电化学方法研究了SRB在高含H2S和高矿化度条件下对碳钢的腐蚀作用。结果表明:SRB对碳钢腐蚀起到明显的加速作用,腐蚀形貌以点蚀为主。在高含H2S和矿化度的环境中,吸附在试样上的SRB可以存活,加速碳钢腐蚀。H2S环境中,在含SRB条件下,随着浸泡时间的延长,试样的自腐蚀电位下降,腐蚀电流密度上升,腐蚀产物膜阻抗及电荷转移阻抗均减小,腐蚀加速;在灭菌条件下,随着浸泡时间的延长,试样的自腐蚀电位增加,腐蚀电流密度减小,腐蚀产物膜阻抗及电荷转移阻抗增加,腐蚀减缓。
标    签 H2S   硫酸盐还原菌   碳钢   点蚀   电化学   H2S   sulfate reducing bacteria   carbon steel   pitting   electrochemistry  
 
Abstract
API-RP38 culture medium was used to culture sulfate-reducing bacteria (SRB) extracted from oil field wastewater, and the growth of SRB was observed. The adsorption morphology of SRB on the surface of samples was observed by scanning electron microscopy (SEM). Weight loss method and electrochemical method were used to study the effects of SRB on corrosion of carbon steel under the conditions of high H2S and high salinity. The results showed that SRB had a significant acceleration effect on the corrosion of carbon steel, and the corrosion morphology was mainly pitting. In the environments with high H2S and salinity, SRB adsorbed on the sample could survive and accelerate the corrosion of carbon steel. In H2S environment, under the condition of containing SRB, the corrosion potential of the sample decreased with the increase of the immersion time, the corrosion current density increased, the corrosion product film resistance and the charge transfer resistance both decreased, and the corrosion accelerated. Under sterilizing conditions, as the immersion time was prolonged, the corrosion potential of the sample increased, the corrosion current density decreased, the resistance of the corrosion product film and the charge transfer resistance increased, and the corrosion slowed down.

中图分类号 TG174   DOI 10.11973/fsyfh-201807014

 
  中国光学期刊网论文下载说明


所属栏目 应用技术

基金项目

收稿日期 2016/12/29

修改稿日期

网络出版日期

作者单位点击查看


引用该论文: MA Lei,XIE Junfeng,XIONG Maoxian,LI Yan,ZHAO Mifeng,WANG Hua. Effect of Sulfate Reducing Bacteria on Pitting Behavior of Carbon Steel in H2S Environment[J]. Corrosion & Protection, 2018, 39(7): 555


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】赵力成,孙成,张付宝,等. SRB对X70管线钢在污染土壤中腐蚀行为的影响[J]. 腐蚀科学与防护技术,2007,27(1):27-30.
 
【2】SCHINK B. Fermentation of tartrate enantiomers by anaerobic bacteria,and description of two new species of strict anaerobes,ruminococcus pasteurii,and Ilyobacter tartaricus[J]. Archives of Microbiology,1984,139(4):409-414.
 
【3】CROMBIE D J,MOODY G J,THONAS J D R. Corrosion of iron by sulfate-reducing bacteria[J]. ChemInform,1980,11(38):no-no.
 
【4】RÈGE H V,SAND W. Evaluation of biocide efficacy by microcalorimetric determination of microbial activity in biofilms[J]. Journal of Microbiological Methods,1998,33(3):227-235.
 
【5】MIRANDA E,BETHENCOURT M,BOTANA F J,et al. Biocorrosion of carbon steel alloys by an hydrogenotrophic sulfate-reducing bacterium desulfovibrio capillatus,isolated from a Mexican oil field separator[J]. Corrosion Science,2006,48(9):2417-2431.
 
【6】POSTGATE J R. The sulphate-reducing bacteria[J]. The Quarterly Review of Biology,1980,19(4):55-55.
 
【7】KING R A,MILLER J D A,SMITH J S. Corrosion of mild steel by iron sulphides[J]. British Corrosion Journal,1973,8(3):137-141.
 
【8】FRANKLIN M J,WHITE D C,ISAACS H S. Pitting corrosion by bacteria on carbon steel,determined by the scanning vibrating electrode technique[J]. Corrosion Science,1991,32(9):945-952.
 
【9】FONTANA M G,STAEHLE R W. Advances in corrosion science and technology[M]. Manhattan:Plenum Press,1970.
 
【10】KVHR C A H V W. Unity of anaerobic and aerobic iron corrosion process in the soil[J]. Corrosion,1961,17(6):119-125.
 
【11】VENZLAFF H,ENNING D,SRINIVASAN J,et al. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria[J]. Corrosion Science,2012,66(1):88-96.
 
【12】俞敦义,彭芳明. 环境对硫酸盐还原菌生长的影响[J]. 材料保护,1996(2):1-2.
 
【13】山丹,马放,王晨. 生态因子对油田注水系统中硫酸盐还原菌生长的影响[J]. 东北石油大学学报,2007,31(1):51-54.
 
【14】EASHWAR M,SUBRAMANIAN G,CHANDRASEKARAN P,et al. Probing microbiologically influenced corrosion of steel during putrefaction of seawater[C]//Corrosion/90-Nace International Conference and Corrosion Sho,[S.l.]:[s.n.],1990.
 
【15】易绍金,张晓林. 硫酸盐还原菌新型测试瓶的研制[J]. 石油天然气学报,1996(b):90-93.
 
【16】GAWEL L J,NG T,ODOM J M,et al. Sulfate reducing bacteria determination and control:EP,US4999286[P]. 1991.
 
【17】YOUNG C C. Bergey's manual of determinative bacteriology[M]. Philadelphia Loppincott Williams & Wilkins,1994:520-521.
 
【18】KING R A,MILLER J D A,SMITH J S. Corrosion of mild steel by iron sulphides[J]. British Corrosion Journal,1973,8(3):137-141.
 
【19】王田丽,刘宏芳,韩霞. 油田注水管道固着菌检测及控制技术[J]. 油气田环境保护,2014,24(4):8-11.
 
【20】LIN C J,DUH J G. Mechanical characteristics of colored film on stainless steel by the current pulse method[J]. Thin Solid Films,1996,287(1/2):80-86.
 
【21】匡飞,王佳,张盾,等. 硫酸盐还原菌的生长过程及其对D36钢海水腐蚀行为的影响[J]. 材料开发与应用,2008,23(3):49-52.
 
【22】RINGAS C,ROBINSON F P A. Corrosion of stainless steel by sulfate-reducing bacteria-total immersion test results[J]. Corrosion,1988,44(9):671-678.
 
相关信息
   标题 相关频次
 克深2-2-12高压气井S13Cr110钢制油管开裂和泄漏原因分析
 10
 BZ102井S13Cr110钢油管裂纹成因分析
 8
 某高压气井特殊螺纹接头油管泄漏原因分析
 8
 某井油管断裂原因分析
 8
 强氧化剂添加对油套管在焦磷酸钾溶液中耐蚀性的影响
 8
 塔里木油田套管气密封检测技术现状及分析
 8
 超级13Cr不锈钢油管在油气田苛刻环境中的适用性
 6
 高强15Cr马氏体不锈钢在有机盐完井液中的腐蚀行为
 6
 某气举井修复油管断裂原因分析
 6
 西部某油田井下电泵接头焊缝断裂原因分析
 6
 西部某油田修复油管的断裂原因
 6
 一种油田深井用新型耐高温锌合金牺牲阳极
 6
 三种不锈钢油管钢在高矿化度H2S/CO2环境中的适用性
 5
 C和Si含量对车轮钢腐蚀行为的影响
 4
 不锈钢管应力腐蚀开裂的评价方法
 4
 导电防腐蚀涂层对电网接地体碳钢的防护行为
 4
 呋喃甲醛[5-(对甲基苯基)-1,3,4-噻二唑-2-巯基]-乙酰腙在硫酸溶液中对碳钢的缓蚀作用
 4
 含Cu抗菌管线钢的抑制微生物腐蚀性能
 4
 某井修复油管脱扣原因分析
 4
 某注气井3Cr钢油管腐蚀原因
 4
 输油管道腐蚀垢样中硫酸盐还原菌对Q235钢腐蚀行为的影响
 4
 碳钢在淡水条件下点蚀的电化学噪声研究
 4
 碳钢在高温高CO2分压环境中的点蚀发展机制
 4
 碳钢在原油储罐沉积水中的电化学行为
 4
 外加厚P110油管接头的脱扣原因
 4
 乙醇胺对碳钢腐蚀性能的影响
 4
 316L钢内衬复合管焊接接头的耐点蚀性能
 3
 Cl-对304L不锈钢从点蚀到应力腐蚀转变行为的影响
 3
 不锈钢在低温地热水环境中的腐蚀与结垢行为
 3
 船用Q235碳钢的海洋微藻附着诱导微生物腐蚀特性
 3