扫一扫 加微信
首页 > 期刊论文 > 论文摘要
选择性激光熔化制造金属构件残余应力的研究进展
          
Research Progress on Residual Stress in Metal Component Manufactured by Selective Laser Melting

摘    要
残余应力是导致选择性激光熔化(SLM)制造金属构件失效的关键因素之一。介绍了SLM制造过程中残余应力的产生机制和检测方法,综述了SLM工艺参数对残余应力的影响,展望了SLM制造构件残余应力研究的未来方向。
标    签 选择性激光熔化   增材制造   残余应力   工艺参数   selective laser melting   additive manufacturing   residual stress   process parameter  
 
Abstract
Residual stress is one of the key factors leading to the failure of metal components manufactured by selective laser melting (SLM). The generation mechanism and the testing methods of residual stress during SLM manufacturing are described; the influence of SLM process parameters on residual stress is summarized; the future direction of residual stress research of SLM manufactured components is prospected.

中图分类号 O436   DOI 10.11973/jxgccl201808001

 
  中国光学期刊网论文下载说明


所属栏目 综述

基金项目 国家自然科学基金资助项目(51504151,51501112);上海市“创新行动计划”基础研究项目(17JC1400600,17JC1400603);上海工程技术大学特聘教授岗位计划资助项目

收稿日期 2018/4/8

修改稿日期 2018/7/15

网络出版日期

作者单位点击查看

备注李九霄(1978-),女,河北石家庄人,讲师,博士

引用该论文: LI Jiuxiao,LI Mingpei,YANG Dongye,HE Bo. Research Progress on Residual Stress in Metal Component Manufactured by Selective Laser Melting[J]. Materials for mechancial engineering, 2018, 42(8): 1~6
李九霄,李鸣佩,杨东野,何博. 选择性激光熔化制造金属构件残余应力的研究进展[J]. 机械工程材料, 2018, 42(8): 1~6


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】SING S L, AN J, YEONG W Y, et al. Laser and electron-beam powder-bed additive manufacturing of metallic implants:A review on processes, materials and designs[J]. Journal of Orthopaedic Research, 2016, 34(3):369-385.
 
【2】GIBSON I, ROSEN D W, STUCKER B. Additive manufacturing technologies:Rapid prototyping to direct digital manufacturing[M]. Boston:Springer, 2010:30-35.
 
【3】刘威,刘婷婷,廖文和, 等. 选择性激光熔融钴铬合金成形工艺研究[J]. 中国激光, 2015, 42(5):0503001.
 
【4】CHUA C K, WONG C H, YEONG W Y. Standards, quality control, and measurement sciences in 3D printing and additive manufacturing[M].[S.l.]:Elsevier Ltd., 2017:1-12.
 
【5】肖振楠,刘婷婷,廖文和, 等. 激光选区熔化成形TC4钛合金热处理后微观组织和力学性能[J]. 中国激光, 2017, 44(9):0902001.
 
【6】LI Y, ZHOU K, TAN P, et al. Modeling temperature and residual stress fields in selective laser melting[J]. International Journal of Mechanical Sciences, 2018, 136:24-35.
 
【7】DEBROY T, WEI H L, ZUBACK J S, et al. Additive manufacturing of metallic components:Process, structure and properties[J].Progress in Materials Science,2018,92:112-224.
 
【8】WITHERS P J, BHADESHIA H. Residual stress. Part 2-Nature and origins[J]. Materials Science and Technology, 2001, 17(4):366-375.
 
【9】LEUDERS S, THÖNE M, RIEMER A, et al. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting:Fatigue resistance and crack growth performance[J]. International Journal of Fatigue, 2013, 48:300-307.
 
【10】SALMI A, ATZENI E. History of residual stresses during the production phases of AlSi10Mg parts processed by powder bed additive manufacturing technology[J]. Virtual and Physical Prototyping, 2017, 12(2):153-160.
 
【11】LIU M Z, XIONG L S, LIN B. An approach of tool-chip friction coefficient estimate for the simulation of machining residual stress[J]. Advanced Materials Research, 2012, 510:827-834.
 
【12】KHURSHID M, LEITNER M, BARSOUM Z, et al. Residual stress state induced by high frequency mechanical impact treatment in different steel grades:Numerical and experimental study[J]. International Journal of Mechanical Sciences, 2017, 123:34-42.
 
【13】王秋成. 航空铝合金残余应力消除及评估技术研究[D]. 杭州:浙江大学, 2003:6-8.
 
【14】CASAVOLA C, CAMPANELLI S L, PAPPALETTERE C. Experimental analysis of residual stresses in the selective laser melting process[C]//Proccedings of the XIth International Congress and Exposition. Orlando, Florida:Society for Experimental Mechanics Inc., 2008, 68:95-99.
 
【15】WITHERS P J, BHADESHIA H. Residual stress. Part 1-Measurement techniques[J]. Materials Science and Technology, 2001, 17(4):355-365.
 
【16】MERCELIS P, KRUTH J P. Residual stresses in selective laser sintering and selective laser melting[J]. Rapid Prototyping Journal, 2006, 12(5):254-265.
 
【17】杨健, 黄卫东, 陈静, 等. 激光快速成形金属零件的残余应力[J]. 应用激光, 2004, 24(1):5-8.
 
【18】PUYMBROECK E V, NAGY W, FANG H, et al. Determination of residual weld stresses with the incremental hole-drilling method in tubular steel bridge joints[J]. Procedia Engineering, 2018, 213:651-661.
 
【19】LE ROUX S, SALEM M, HOR A. Improvement of the bridge curvature method to assess residual stresses in selective laser melting[J]. Additive Manufacturing, 2018, 22:320-329.
 
【20】DREIER S, DENKENA B. Determination of residual stresses in plate material by layer removal with machine-integrated measurement[J]. Procedia CIRP, 2014, 24:103-107.
 
【21】AHMED I I, ADEBISI J A, ABDULKAREEM S, et al. Investigation of surface residual stress profile on martensitic stainless steel weldment with X-ray diffraction[J]. Journal of King Saud University (Engineering Sciences), 2018, 30(2):183-187.
 
【22】OLIVEIRA J P, FERNANDES F M B, MIRANDA R M, et al. Residual stress analysis in laser welded NiTi sheets using synchrotron X-ray diffraction[J]. Materials & Design, 2016, 100:180-187.
 
【23】JIANG W, CHEN W, WOO W, et al. Effects of low-temperature transformation and transformation-induced plasticity on weld residual stresses:Numerical study and neutron diffraction measurement[J]. Materials & Design, 2018, 147:65-79.
 
【24】RABUNG M, ALTPETER I, BOLLER C, et al. Non-destructive evaluation of the micro residual stresses of Ⅲrd order by using micro magnetic methods[J]. NDT & E International, 2014, 63:7-10.
 
【25】ZHAN Y, LIU C, KONG X, et al. Experiment and numerical simulation for laser ultrasonic measurement of residual stress[J]. Ultrasonics, 2017, 73:271-276.
 
【26】王庆明, 孙渊. 残余应力测试技术的进展与动向[J]. 机电工程, 2011, 28(1):11-15.
 
【27】SIMSON T, EMMEL A, DWARS A, et al. Residual stress measurements on AISI 316L samples manufactured by selective laser melting[J]. Additive Manufacturing, 2017, 17:183-189.
 
【28】CHENG B, SHRESTHA S, CHOU K. Stress and deformation evaluations of scanning strategy effect in selective laser melting[J]. Additive Manufacturing, 2016, 12:240-251.
 
【29】MUGWAGWAA L, DIMITROVA D, MATOPEA S, et al. Influence of process parameters on residual stress related distortions in selective laser melting[J]. Procedia Manufacturing, 2018, 21:92-99.
 
【30】NGUYEN Q B, LUU D N, NAI S M L, et al. The role of powder layer thickness on the quality of SLM printed parts[J]. Archives of Civil and Mechanical Engineering, 2018, 18(3):948-955.
 
【31】KHAIRALLAH S A, ANDERSON A. Mesoscopic simulation model of selective laser melting of stainless steel powder[J]. Journal of Materials Processing Technology, 2014,214(11):2627-2636.
 
【32】LI X P, KANG C W, HUANG H, et al. The role of a low-energy-density re-scan in fabricating crack-free Al85Ni5Y6Co2Fe2 bulk metallic glass composites via selective laser melting[J]. Materials & Design, 2014, 63:407-411.
 
【33】BRVCKNER F, LEPSKI D, BEYER E. Modeling the influence of process parameters and additional heat sources on residual stresses in laser cladding[J]. Journal of Thermal Spray Technology, 2007, 16(3):355-373.
 
【34】LIVERANI E, TOSCHI S, CESCHINI L, et al. Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel[J]. Journal of Materials Processing Technology, 2017, 249:255-263.
 
【35】LOH L E, CHUA C K, YEONG W Y, et al. Numerical investigation and an effective modelling on the Selective Laser Melting (SLM) process with aluminium alloy 6061[J]. International Journal of Heat and Mass Transfer, 2015, 80:288-300.
 
【36】LI Y, GU D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder[J]. Materials & Design, 2014, 63:856-867.
 
【37】FU C H, GUO Y B. Three-dimensional temperature gradient mechanism in selective laser melting of Ti-6Al-4V[J]. Journal of Manufacturing Science and Engineering, 2014, 136(6):061004.
 
【38】龚丞, 王丽芳, 朱刚贤, 等. 激光增材制造工艺参数对熔覆层残余应力影响[J/OL]. 激光技术:1-10[2018-04-08].http://kns.cnki.net/kcms/detail/51.1125.TN.20180605.1722.004.html.
 
【39】MANVATKAR V, DE A, DEBROY T. Spatial variation of melt pool geometry, peak temperature and solidification parameters during laser assisted additive manufacturing process[J]. Materials Science and Technology, 2015, 31(8):924-930.
 
【40】HUSSEIN A, HAO L, YAN C, et al. Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting[J]. Materials & Design, 2013, 52:638-647.
 
【41】POHL H, SIMCHI A, ISSA M, et al. Thermal stresses in direct metal laser sintering[C]//Proceedings of the 12th Solid Freeform Fabrication Symposium. Austin, TX:[s.n.], 2001,60:78-85.
 
【42】NADAMMAL N, CABEZA S, MISHUROVA T, et al. Effect of hatch length on the development of microstructure, texture and residual stresses in selective laser melted superalloy Inconel 718[J]. Materials & Design, 2017, 134:139-150.
 
【43】VAN BELLE L, VANSTEENKISTE G, BOYER J C. Investigation of residual stresses induced during the selective laser melting process[J].Key Engineering Materials, 2013, 554:1828-1834.
 
【44】QIU C, ADKINS N J E, ATTALLAH M M. Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V[J]. Materials Science and Engineering:A, 2013, 578:230-239.
 
【45】ZAEH M F, BRANNER G. Investigations on residual stresses and deformations in selective laser melting[J]. Production Engineering, 2010, 4(1):35-45.
 
【46】KRUTH J P, FROYEN L, VAN VAERENBERGH J, et al. Selective laser melting of iron-based powder[J]. Journal of Materials Processing Technology, 2004, 149(1/2/3):616-622.
 
【47】PARRY L, ASHCROFT I A, WILDMAN R D. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation[J]. Additive Manufacturing, 2016, 12:1-15.
 
【48】CATCHPOLE-SMITH S, ABOULKHAIR N, PARRY L, et al. Fractal scan strategies for selective laser melting of ‘unweldable’ nickel superalloys[J]. Additive Manufacturing, 2017, 15:113-122.
 
【49】NICKEL A H, BARNETT D M, PRINZ F B. Thermal stresses and deposition patterns in layered manufacturing[J]. Materials Science and Engineering:A,2001,317(1/2):59-64.
 
【50】QIAN B, SHI Y S, WEI Q S, et al. The helix scan strategy applied to the selective laser melting[J]. The International Journal of Advanced Manufacturing Technology, 2012, 63(5/6/7/8):631-640.
 
【51】VORA P, MUMTAZ K, TODD I, et al. AlSi12 in-situ alloy formation and residual stress reduction using anchorless selective laser melting[J]. Additive Manufacturing, 2015, 7:12-19.
 
【52】ALI H, GHADBEIGI H, MUMTAZ K. Effect of scanning strategies on residual stress and mechanical properties of Selective Laser Melted Ti6Al4V[J]. Materials Science and Engineering:A, 2018, 712:175-187.
 
【53】刘延辉,瞿伟成,朱小刚,等. 激光3D打印TC4钛合金工件根部裂纹成因分析[J]. 理化检验-物理分册,2016, 52(10):682-685.
 
【54】ABE F, OSAKADA K, SHIOMI M, et al. The manufacturing of hard tools from metallic powders by selective laser melting[J]. Journal of Materials Processing Technology, 2001, 111(1/2/3):210-213.
 
相关信息
   标题 相关频次
 激光选区熔化成形TC4钛合金显微组织与性能的研究进展
 5
 选择性激光熔化原位自生TiB+La2O3/TC4钛基复合材料的组织和力学性能
 5
 高能束增材制造钛铝合金的研究进展
 4
 激光增材制造金属零部件变形的研究现状
 4
 大层厚下选区激光熔化成形316L不锈钢工艺的优化
 3
 放电等离子烧结温度对Ti-45Al-6Nb-0.3W合金显微组织和力学性能的影响
 3
 钆含量对电弧增材制造成形Mg-Gd合金显微组织和力学性能的影响
 3
 工业CT技术在激光选区熔化增材制造中的应用
 3
 固溶和时效处理对选区激光熔化成形GTD222镍基合金组织和硬度的影响
 3
 选择性激光熔化增材制造工艺过程模拟研究现状
 3
 12Cr13钢预热处理工艺参数优化
 2
 15 mm厚度TC4合金增材制造制件的射线照相检测
 2
 16MnD5钢板焊接件热影响区开裂原因分析
 2
 16MnR钢板焊接对接接头残余应力磁记忆检测研究
 2
 16Mn钢弯管的开裂原因
 2
 17Cr2Ni2Mo钢的表面复合喷丸强化
 2
 18Cr2Ni4WA钢氮化和喷丸强化处理的残余应力及性能
 2
 1Cr18Ni9Ti不锈钢导管开裂原因分析
 2
 2A14铝合金去应力热时效的作用
 2
 300M钢热损伤的巴克豪森检测
 2
 304不锈钢薄壁焊管表面残余拉应力的测定及消除
 2
 304不锈钢焊缝附近的点蚀损伤发展规律
 2
 304不锈钢焊管应力腐蚀开裂原因
 2
 30CrMnSiNi2A钢轮轴表面镀硬铬区域开裂的原因及控制措施
 2
 316L奥氏体不锈钢碱液储罐开裂原因
 2
 316L不锈钢板式换热器泄漏原因
 2
 316L不锈钢粉选择性激光熔化成形工艺及成形后的性能
 2
 316不锈钢护栏腐蚀失效分析
 2
 42CrMoA钢的单次喷丸和复合喷丸强化
 2
 45Cr4NiMoV钢支承辊锻件表面感应淬火后的残余应力分布
 2