扫一扫 加微信
首页 > 期刊论文 > 论文摘要
WC-Al2O3复合材料与Si3N4陶瓷和YG6硬质合金配副时的摩擦磨损行为
          
Friction and Wear Behaviors of WC-Al2O3 Composite Paired with Si3N4 Ceramics and YG6 Cemented Carbide

摘    要
采用真空热压烧结技术制备了WC-15%Al2O3(质量分数)复合材料,分别以Si3N4陶瓷和YG6硬质合金为配副,在载荷40,80 N下进行了干滑动摩擦磨损试验,研究了复合材料的摩擦磨损性能。结果表明:与Si3N4陶瓷配副时复合材料的摩擦因数较高且波动较大,与YG6硬质合金配副时摩擦因数较低且相对稳定;与Si3N4陶瓷配副时,复合材料的磨损率在较低载荷下高于与YG6硬质合金配副时的,在较高载荷下则低于与YG6硬质合金配副时的;在载荷40,80 N下,复合材料的磨损机制均主要为疲劳磨损,伴随着微裂纹、脆性断裂和晶粒拔出等特征。
标    签 WC-Al2O3复合材料   Si3N4陶瓷   YG6硬质合金   摩擦磨损   WC-Al2O3 composite   Si3N4 ceramics   YG6 cemented carbide   friction and wear  
 
Abstract
WC-15wt%Al2O3 composite was prepared by vacuum hot-press sintering technique, and then subjected to dry sliding friction and wear tests under loads of 40, 80 N against Si3N4 ceramics and YG6 cemented carbide, respectively. The friction and wear behavior of the composite was investigated. The results show that the friction factor of the composite against Si3N4 ceramics was relatively high and fluctuated fiercely, whereas when against YG6 cemented carbide, the friction factor was relatively low and stable. The wear rate of the composite against Si3N4 ceramics was higher than that against YG6 cemented carbide at a lower load, whearas lower than that against YG6 cemented carbide at a heavier load. The wear mechanism of the composite under both loads of 40 N and 80 N was mainly fatigue wear, exhibiting features of microcracking, brittle fracture and pull-out of grains.

中图分类号 TH117.1   DOI 10.11973/jxgccl201903010

 
  中国光学期刊网论文下载说明


所属栏目 材料性能及应用

基金项目 中央高校基本科研业务费专项资金资助项目(17D310305)

收稿日期 2018/3/12

修改稿日期 2019/2/20

网络出版日期

作者单位点击查看

备注苏庆德(1991-),男,山东临沂人,博士研究生

引用该论文: SU Qingde,ZHU Shigen,DING Hao,BAI Yunfeng,DI Ping. Friction and Wear Behaviors of WC-Al2O3 Composite Paired with Si3N4 Ceramics and YG6 Cemented Carbide[J]. Materials for mechancial engineering, 2019, 43(3): 50~54
苏庆德,朱世根,丁浩,白云峰,狄平. WC-Al2O3复合材料与Si3N4陶瓷和YG6硬质合金配副时的摩擦磨损行为[J]. 机械工程材料, 2019, 43(3): 50~54


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】黄培云. 粉末冶金原理[M]. 北京:冶金工业出版社, 1997.
 
【2】KLAASEN H, KVBARSEPP J. Wear of advanced cemented carbides for metalforming tool materials[J]. Wear, 2004, 256(7/8):846-853.
 
【3】PIRSO J, LETUNOVITŠ S, VILJUS M. Friction and wear behaviour of cemented carbides[J]. Wear, 2004, 257(3/4):257-265.
 
【4】KIM H C, SHON I J, YOON J K, et al. Rapid sintering of ultrafine WC-Ni cermets[J]. International Journal of Refractory Metals and Hard Materials, 2006, 24(6):427-431.
 
【5】MALEK O, LAUWERS B, PEREZ Y, et al. Processing of ultrafine ZrO2 toughened WC composites[J]. Journal of the European Ceramic Society, 2009, 29(16):3371-3378.
 
【6】MA J, ZHU S G, OUYANG C X. Two-step hot-pressing sintering of nanocomposite WC-MgO compacts[J]. Journal of the European Ceramic Society, 2011, 31(10):1927-1935.
 
【7】QU H, ZHU S G, LI Q, et al. Microstructure and mechanical properties of hot-pressing sintered WC-x vol.%Al2O3 composites[J]. Materials Science and Engineering:A, 2012, 543:96-103.
 
【8】QU H X, ZHU S G, LI Q, et al. Influence of sintering temperature and holding time on the densification, phase transformation, microstructure and properties of hot pressing WC-40vol.%Al2O3 composites[J]. Ceramics International, 2012, 38(2):1371-1380.
 
【9】DONG W W, ZHU S G, WANG Y, et al. Influence of VC and Cr3C2 as grain growth inhibitors on WC-Al2O3 composites prepared by hot press sintering[J]. International Journal of Refractory Metals and Hard Materials, 2014, 45:223-229.
 
【10】SAITO H, IWABUCHI A, SHIMIZU T. Effects of Co content and WC grain size on wear of WC cemented carbide[J]. Wear, 2006, 261(2):126-132.
 
【11】GONG T M, YAO P P, ZUO X T, et al. Influence of WC carbide particle size on the microstructure and abrasive wear behavior of WC-10Co-4Cr coatings for aircraft landing gear[J]. Wear, 2016, 362/363:135-145.
 
【12】BONNY K, DE BAETS P, PEREZ Y, et al. Friction and wear characteristics of WC-Co cemented carbides in dry reciprocating sliding contact[J]. Wear, 2010, 268(11/12):1504-1517.
 
【13】尹斌, 周惠娣, 陈建敏, 等. 等离子喷涂纳米WC-12%Co涂层与陶瓷和不锈钢配副时的摩擦磨损性能对比研究[J]. 摩擦学学报, 2008, 28(3):213-218.
 
【14】骆祎岚, 刘秀蕊, 董威威, 等. WC-Al2O3复合材料摩擦磨损性能[J]. 复合材料学报, 2016, 33(11):2584-2590.
 
【15】李秀林, 陈丽勇, 易丹青, 等. WC-11Co硬质合金与不同岩石的摩擦磨损特性[J]. 粉末冶金材料科学与工程, 2015, 20(3):398-405.
 
【16】SHEIKH-AHMAD J Y, BAILEY J A. The wear characteristics of some cemented tungsten carbides in machining particleboard[J]. Wear, 1999, 225/226/227/228/229:256-266.
 
【17】BAJWA S, RAINFORTH W M, LEE W E. Sliding wear behaviour of SiC-Al2O3 nanocomposites[J]. Wear, 2005, 259(1/2/3/4/5/6):553-561.
 
相关信息
   标题 相关频次
 Al2O3-13%TiO2/铁基非晶合金复合涂层的室温摩擦磨损行为
 2
 AlN含量对AlN/Zr-Cu复合材料性能的影响
 2
 CeO2添加量对铁基粉末冶金材料表面渗硼层组织与摩擦磨损性能的影响
 2
 H13钢氮化前后表面磁控溅射CrAlN薄膜的摩擦磨损性能
 2
 PTFE/7075铝合金镶嵌型自润滑材料的摩擦学行为
 2
 TC11钛合金表面渗锆层组织及其摩擦学性能
 2
 ZL101A铝合金表面微弧氧化陶瓷层的摩擦磨损性能
 2
 表面粗糙度对碳/铜载流摩擦副摩擦磨损性能的影响
 2
 表面微弧氧化镁合金在流动模拟体液中的磨损行为
 2
 箔片空气轴承表面钛掺杂DLC膜的制备与表征
 2
 不同纤维增强和不同固体润滑剂改性PTFE复合材料的摩擦磨损性能
 2
 超高分子量聚乙烯在过氧化氢溶液中的摩擦学性能
 2
 超音速火焰喷涂Cr3C2-NiCr涂层的显微组织与磨损性能
 2
 沉积温度及膜厚对离子镀银膜结构及摩擦学性能的影响
 2
 等离子体源渗氮奥氏体不锈钢的摩擦磨损行为
 2
 反应烧结碳化硅陶瓷材料的摩擦磨损性能
 2
 高速列车铜基粉末冶金闸片的制备及摩擦磨损性能
 2
 高转速、不同法向载荷条件下车轮与钢轨间的滚动摩擦磨损及损伤行为
 2
 合金成分和石墨形貌对镍-铁-石墨-硅合金摩擦磨损性能的影响
 2
 化学镀Ni-P-PTFE复合镀层的研究进展
 2
 化学气相沉积Ti(CN)/TiC/Al2O3多层涂层的结构和耐磨性能
 2
 基于柔性金属布技术的梯度WC增强NiCrBSi合金涂层的制备及性能
 2
 激光熔覆FeCrB/NiCrB合金涂层的摩擦磨损与抗冲击性能
 2
 浸渗型高温自润滑金属陶瓷复合材料的制备及其性能
 2
 聚四氟乙烯与超细高岭土填充聚甲醛复合材料的摩擦学性能
 2
 聚四氟乙烯与蒙脱土填充聚苯硫醚复合材料的
 2
 镁合金表面磁控溅射CNx/SiC双层膜的性能
 2
 纳米TiO2的磨损自修复特性
 2
 纳米ZnO填充尼龙1010复合材料的力学与摩擦学性能
 2
 纳米石墨/铝基复合材料的摩擦磨损性能
 2