搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
选区激光熔化制备Hastelloy-X合金的有限元模拟及其高温蠕变性能
          
Finite Element Simulation and High-temperature Creep Property of Hastelloy-X Superalloy Prepared by Selective Laser Melting

摘    要
基于选区激光熔化(SLM)成型原理,利用体生热率法模拟热源模型,采用ANSYS参数化设计语言实现激光热源的移动加载,通过有限元模型模拟了Hastelloy-X合金在SLM成型过程中单层瞬态温度场和熔池的形貌,并对模拟结果进行了试验验证;研究了SLM成型试样的高温蠕变性能,并与固溶态Hastelloy-X合金热轧棒材的进行对比。结果表明:体生热率法能够较好地模拟SLM成型过程中的单层瞬态温度场,计算得到的熔池尺寸和一次枝晶间距与试验结果吻合较好;在相同蠕变试验条件下,SLM成型试样的稳态蠕变速率远低于固溶态Hastelloy-X合金热轧棒材的,但二者的蠕变应力指数相近,且均主要通过位错的移动和攀移进行蠕变变形。
标    签 Hastelloy-X合金   选区激光熔化   温度场   有限元模拟   蠕变性能   Hastelloy-X superalloy   selective laser melting   temperature field   finite element simulation   creep property  
 
Abstract
Based on molding principle of selective laser melting (SLM), the heat source model was simulated by body heat generation method, and the load of moving laser heat source was realized by ANSYS parametric design language (APDL); then the single-layer transient temperature field and molten pool morphology of Hastelloy-X superalloy during SLM process were simulated by finite element model. The simulation results were verified by tests. The high temperature creep property of SLM molding specimens was investigated and compared with Hastelloy-X superalloy hot-rolled rods treated by solution. The results show that the body heat generation method could simulate the single-layer transient temperature field during SLM molding well, and the calculated molten pool size and primary dendrite spacing agreed well with the experimental results. Under the same creep test condition, the steady-state creep rate of SLM molding specimen was much lower than that of Hastelloy-X superalloy hot-rolled rods treated by solution; however, the creep stress index of them were similar, and creep deformation were both dominated by movement and climbing of dislocations.

中图分类号 TN249   DOI 10.11973/jxgccl201909012

 
  中国光学期刊网论文下载说明


所属栏目 物理模拟与数值模拟

基金项目 上海市航空材料检测与评价专业技术服务平台项目(16DZ2290500)

收稿日期 2018/9/11

修改稿日期 2019/7/16

网络出版日期

作者单位点击查看

备注李勇(1988-),男,山东菏泽人,硕士研究生

引用该论文: LI Yong,XU Hejun,BA Fahai,HE Beibei,LI Kai. Finite Element Simulation and High-temperature Creep Property of Hastelloy-X Superalloy Prepared by Selective Laser Melting[J]. Materials for mechancial engineering, 2019, 43(9): 60~67
李勇,许鹤君,巴发海,何贝贝,李凯. 选区激光熔化制备Hastelloy-X合金的有限元模拟及其高温蠕变性能[J]. 机械工程材料, 2019, 43(9): 60~67


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】GOKULDOSS P K, KOLLA S, ECKERT J. Additive manufacturing processes:Selective laser melting, electron beam melting and binder jetting - Selection guidelines[J]. Materials, 2017, 10:1-12.
 
【2】MA P, JIA Y, PRASHANTH K G, et al. Microstructure and phase formation in Al-20Si-5Fe-3Cu-1Mg synthesized by selective laser melting[J]. Journal of Alloys and Compounds, 2016, 657:430-435.
 
【3】YADROITSEV I, BERTRAND P, SMUROV I. Parametric analysis of the selective laser melting process[J]. Applied Surface Science, 2007, 253:8064-8069.
 
【4】赵志国,柏林,李黎,等. 激光选区熔化成形技术的发展现状及研究进展[J]. 航空制造技术, 2014, 463(19):46-49.
 
【5】中国航空材料手册委员会. 中国航空材料手册[M]. 北京:中国标准出版社, 2002:224-237.
 
【6】WANG F. Mechanical property study on rapid additive layer manufacture Hastelloy-X alloy by selective laser melting technology[J]. International Journal of Advanced Manufacturing Technology, 2012, 58:545-551.
 
【7】TOMUS D, JARVIS T, WU X, et al. Controlling the microstructure of Hastelloy-X components manufactured by selective laser melting[J]. Physics Procedia,2013,41:823-827.
 
【8】ROBERTS I A, WANG C J, ESTERLEIN R, et al. A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing[J]. International Journal of Machine Tools and Manufacture, 2009, 49:916-923.
 
【9】HUANG Y, YANG L J, DU X Z, et al. Finite element analysis of thermal behavior of metal powder during selective laser melting[J]. International Journal of Thermal Science, 2016, 104:146-157.
 
【10】文舒,董安平,陆燕玲,等. GH536高温合金选区激光熔化温度场和残余应力的有限元模拟[J]. 金属学报, 2018, 54(3):393-403.
 
【11】吴文恒,张亮,何贝贝,等. 选择性激光熔化增材制造工艺过程模拟研究现状[J]. 理化检验-物理分册, 2016, 52(10):693-697.
 
【12】LI Y, QI H, HOU H, et al. Effects of hot isostatic pressing on microstructure and mechanical properties of Hastelloy X samples produced by selective laser melting[C]//Second International Conference on Mechanics, Materials and Structural Engineering. France:Atlantis Press, 2017:31-37.
 
【13】侯慧鹏, 梁永朝, 何艳丽,等. 选区激光熔化Hastelloy-X合金组织演变及拉伸性能[J]. 中国激光, 2017, 44(2):1-6.
 
【14】廖文俊,樊恩想,付超. 激光选区熔化Hastelloy-X合金的显微组织与拉伸性能[J]. 机械工程材料, 2018, 42(7):16-27.
 
【15】姚化山,史玉升,章文献,等. 金属粉末选区激光熔化成形过程温度场模拟[J]. 应用激光, 2007,27(6):456-460.
 
【16】陈庆华. 激光与材料相互作用及热场模拟[M]. 昆明:云南科技出版社, 2001:13-30.
 
【17】TOLOCHKO N K, KHLOPKOV Y V, MOZZHAROV S E, et al. Absorptance of powder materials suitable for laser sintering[J]. Rapid Prototyping Journal,2000,6(3):155-160.
 
【18】严深平,张安峰,梁少端,等. 激光增材制造技术常用金属材料激光吸收率测量[J].航空制造技术,2017,536(17):97-100.
 
【19】FOROOZMEHR A, BADROSSAMAY M, FOROOZMEHR E, et al. Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed[J]. Materials and Design, 2016, 89:255-263.
 
【20】MILLS K C. Recommended values of thermophysical properties for selected commercial alloys[J]. Aircraft Engineering Aerospace Technology, 2002, 5:175-181.
 
【21】DONG L, MAKRADI A, AHZI S, et al. Three-dimensional transient finite element analysis of the selective laser sintering process[J]. Journal of Materials Processing Technology, 2009, 209(2):700-706.
 
【22】HUSSEIN A, HAO L, YAN C, et al. Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting[J]. Materials and Design, 2013, 52:638-647.
 
【23】HARRISON N J, TODD I, MUMTAZ K. Reduction of micro-cracking in nickel superalloys processed by selective laser melting:A fundamental alloy design approach[J]. Acta Materialia, 2015, 94:59-68.
 
【24】NI T, DONG J. Creep behaviors and mechanisms of Inconel718 and Allvac 718 plus[J]. Materials Science & Engineering:A, 2017, 700:406-415.
 
【25】陈云翔,严伟,胡平,等. T/P91钢在高应力条件下蠕变行为的CDM模型模拟[J]. 金属学报, 2011, 47(11):1372-1377.
 
相关信息
   标题 相关频次
 体能量密度对选区激光熔化成形Hastelloy X合金组织及性能的影响
 12
 3D打印技术的发展和挑战
 6
 GH3536合金的蠕变性能及蠕变行为
 6
 热等静压工艺对选区激光熔化成形Hastelloy X合金持久性能的影响
 6
 新版X射线残余应力测定国标中的新技术与新要求
 6
 2124铝合金超厚板热轧过程温度场的数值模拟
 4
 GB/T 7704-2017标准残余应力计算公式解析
 4
 TC4钛合金疲劳寿命不确定度评定
 4
 U71Mn钢重轨轧制全过程中轧件温度场的有限元模拟
 4
 残余应力测试结果的定性分析与判断
 4
 激光反应熔覆碳化物陶瓷涂层温度场的有限元模拟
 4
 金属薄板拉压低周疲劳防屈曲装置研究进展
 4
 金属材料残余应力的测定方法
 4
 金属材料仪器化冲击试验方法国内外标准比较
 4
 某挤出机螺杆断裂原因分析
 4
 碳化钨颗粒增强金属基复合涂层制备工艺研究及发展现状
 4
 铁水包耳轴断裂失效分析
 4
 选择性激光熔化增材制造工艺过程模拟研究现状
 4
 一种适用于低合金钢的埋弧焊焊丝
 4
 基于磁场测量的脉冲远场涡流检测双层套管仿真
 3
 12Cr9NiAlMo模具钢的选区激光熔化成形工艺优化及热处理后的组织和性能
 2
 2024铝合金随机多弹丸喷丸后残余应力场的有限元模拟
 2
 20CrMnTi齿轮钢棒材控轧控冷工艺的优化
 2
 20钢渗碳过程中温度场及应力场的数值模拟
 2
 22MnB5钢制轿车后桥横梁热冲压成形的有限元模拟
 2
 2Cr18Ni8W2不锈钢圆棒精锻过程的有限元模拟
 2
 6063铝合金在不同应力状态下的变形及损伤行为
 2
 7022铝合金搅拌摩擦焊接全过程温度场的数值模拟
 2
 7075-T6铝合金摩擦塞焊焊接区域温度场的数值模拟
 2
 Al2O3sf/LY12棒材半固态挤压工艺温度场的有限元模拟与分析
 2