扫一扫 加微信
首页 > 期刊论文 > 论文摘要
长期服役后X20马氏体钢的腐蚀电化学行为
          
Corrosion Electrochemical Behavior of X20 Martensitic Steel after Long-term Service

摘    要
结合电化学分析和微观形貌观察,研究了在电厂服役230 000 h后X20钢的腐蚀电化学行为,以及微观组织结构退化与电化学行为的关联性。结果表明:经长期服役后X20钢组织内原奥氏体晶界和马氏体板条界上分布的碳化物严重粗化。富铬碳化物在晶界的析出和长大可能导致钢在含氯离子环境中的抗点蚀形核和再钝化能力降低。显微形貌观察表明,X20钢表面点蚀坑易萌生于原奥氏体晶界和马氏体板条界处,这与晶界附近析出的稳定碳化物将铬元素隔离在晶界外,从而使得原奥氏体晶界和马氏体板条界附近形成局部的贫铬区有关。
标    签 X20钢   长期服役   结构演变   腐蚀   电化学   X20 steel   long-term service   microstructural evolution   corrosion   electrochemistry  
 
Abstract
The electrochemical behavior of X20 steel after 230 000 hours service in power plant, and the correlation between microstructure degradation and electrochemical behavior were investigated by electrochemical analysis and micromorphology observation. The results show that the carbides distributed in prior austenite grain boundary and martensite lath boundary were severely coarsened after long-term service. The precipitation and growth of chromium-rich carbides at the boundaries may lead to the reduction of the resistance to pitting nucleation and repassivation of the steel in chloride environment. The microstructure observation show that the pits on the surface of X20 steel were easy to be initiated at the original austenite grain boundary. This was because the stable carbide precipitated near the grain boundary separated the chromium element from the grain boundary, and local austenite grain boundary and martensite lath boundary formed a localized chromium-depleted zone.

中图分类号 TG172.8   DOI 10.11973/fsyfh-201911001

 
  中国光学期刊网论文下载说明


所属栏目 试验研究

基金项目 "挑战杯"竞赛支撑项目(TZ20180003);江苏省大学生创新创业训练计划项目(201911276004Z);国家自然科学基金青年科学基金(51801098);国家自然科学基金(51971163)

收稿日期 2018/5/4

修改稿日期

网络出版日期

作者单位点击查看


引用该论文: YU Feihai,ZHANG Zhen,HU Zhengfei,LI Guizhen,WANG Qi,DUAN Weiwei. Corrosion Electrochemical Behavior of X20 Martensitic Steel after Long-term Service[J]. Corrosion & Protection, 2019, 40(11): 783


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】YI Y S, LEE B, KIM S, et al. Corrosion and corrosion fatigue behaviors of 9Cr steel in a supercritical water condition[J]. Materials Science and Engineering:A, 2006, 429(1/2):161-168.
 
【2】TOLOCZKO M B, HAMILTON M L, MALOY S A. High temperature tensile testing of modified 9Cr-1Mo after irradiation with high energy protons[J]. Journal of Nuclear Materials, 2003, 318:200-206.
 
【3】HENRY J, AVERTY X, DAI Y, et al. Tensile properties of 9Cr-1Mo martensitic steel irradiated with high energy protons and neutrons[J]. Journal of Nuclear Materials, 2003, 318:215-227.
 
【4】KANNAN R, SRINIVASAN V S, VALSAN M, et al. High temperature low cycle fatigue behaviour of P92 tungsten added 9Cr steel[J]. Transactions of the Indian Institute of Metals, 2010, 63(2/3):571-574.
 
【5】HALD J. Microstructure and long-term creep properties of 9-12% Cr steels[J]. International Journal of Pressure Vessels and Piping, 2008, 85(1/2):30-37.
 
【6】ZHANG Z, SINGH P M, HU Z F. The corrosion behavior of 9Cr ferritic-martensitic heat-resistant steel in water and chloride environment[J]. Journal of Engineering Materials and Technology, 2015, 137(3):109-120.
 
【7】ZUREK J, DE BRUYCKER E, HUYSMANS S, et al. Steam oxidation of 9% to 12% Cr steels:critical evaluation and implications for practical application[J]. Corrosion, 2014, 70(2):112-129.
 
【8】AHMEDABADI P, WAS G. Stress corrosion cracking of ferritic-maretensitic steels in simulated boiling water reactor environment[J]. Corrosion, 2016,72:66-77.
 
【9】张振, 胡正飞, 张乐福. 溶解氧对P92钢超临界水环境中应力腐蚀开裂的影响[J]. 材料热处理学报, 2016, 37(9):105-111.
 
【10】ZHONG X Y, WU X Q, HAN E H. Effects of exposure temperature and time on corrosion behavior of a ferritic-martensitic steel P92 in aerated supercritical water[J]. Corrosion Science, 2015, 90:511-521.
 
【11】BENJAMIN F, MAXIME S, ALEXANDRA R, et al. Microstructural evolutions and cyclic softening of 9%Cr martensitic steels[J]. Journal of Nuclear Materials, 2009, 386/387/388:71-74.
 
【12】ISIK M I, KOSTKA A, YARDLEY V A, et al. The nucleation of Mo-rich Laves phase particles adjacent to M23C6 micrograin boundary carbides in 12% Cr tempered martensite ferritic steels[J]. Acta Materialia, 2015, 90:94-104.
 
【13】XU Y T, ZHANG X Y, TIAN Y B, et al. Study on the nucleation and growth of M23C6 carbides in a 10% Cr martensite ferritic steel after long-term aging[J]. Materials Characterization, 2016, 111:122-127.
 
【14】NEELAKANTAN L, MONCHEV B, FROTSCHER M, et al. The influence of secondary phase carbide particles on the passivity behaviour of NiTi shape memory alloys[J]. Materials and Corrosion, 2012, 63:979-984.
 
【15】SHIBAEVA T V, LAURINAVICHYUTE V K, TSIRLINA G A, et al. The effect of microstructure and non-metallic inclusions on corrosion behavior of low carbon steel in chloride containing solutions[J]. Corrosion Science, 2014, 80:299-308.
 
【16】SIKKA VK, WARD CT, THOMAS K C. Proceedings of ASM international conference on production, fabrication, properties and application of ferritic steels for high temperature applications[C]//Warren, PA, 6-8 October 1981. Metals Park (OH):ASM, 1983;65-84.
 
【17】LUNDIN L. High resolution microanalysis of creep resistant 9%-12%chromium steels[D]. Gteborg, Sweden:Chalmars University of Technology, 1995.
 
【18】束德林. 工程材料力学性能[M]. 北京:机械工业出版社, 2015.
 
【19】PARDO A, MERINO M C, COY A E, et al. Influence of Ti, C and N concentration on the intergranular corrosion behaviour of AISI 316Ti and 321 stainless steels[J]. Acta Materialia, 2007, 55(7):2239-2251.
 
【20】GABERŠCEK M, PEJOVNIK S. Impedance spectroscopy as a technique for studying the spontaneous passivation of metals in electrolytes[J]. Electrochimica Acta, 1996, 41(7/8):1137-1142.
 
【21】KOSEC T, MERL D K, MILOŠEV I. Impedance and XPS study of benzotriazole films formed on copper, copper-zinc alloys and zinc in chloride solution[J]. Corrosion Science, 2008, 50(7):1987-1997.
 
【22】MACDONALD D D. The point defect model for the passive state[J]. Journal of the Electrochemical Society, 1992, 139(12):3434.
 
【23】MACDONALD D D. The history of the point defect model for the passive state:A brief review of film growth aspects[J]. Electrochimica Acta, 2011, 56(4):1761-1772.
 
【24】KOCIJAN A, MERL D K, JENKO M. The corrosion behaviour of austenitic and duplex stainless steels in artificial saliva with the addition of fluoride[J]. Corrosion Science, 2011, 53(2):776-783.
 
【25】BRANKOVIC G, BRANKOVIC Z, JOVIC V D, et al. Fractal approach to ac impedance spectroscopy studies of ceramic materials[J]. Journal of Electroceramics, 2001, 7(2):89-94.
 
【26】MAITRA M, SINHA M, MUKHOPADHYAY A, et al. Ion-conductivity and Young's modulus of the polymer electrolyte PEO-ammonium perchlorate[J]. Solid State Ionics, 2007, 178(3/4):167-171.
 
【27】ZHENG S Q, LI C Y, QI Y M, et al. Mechanism of (Mg, Al, Ca)-oxide inclusion-induced pitting corrosion in 316L stainless steel exposed to sulphur environments containing chloride ion[J]. Corrosion Science, 2013, 67:20-31.
 
【28】LI H B, JIANG Z H, FENG H, et al. Corrosion behavior of ferritic stainless steel with 15wt% chromium for the automobile exhaust system[J]. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(9):850-860.
 
相关信息
   标题 相关频次
 海洋工程用D36、F460和F690钢在模拟海水中的电化学腐蚀行为
 8
 F690海洋工程钢在大气中不同应力条件下的疲劳极限及裂纹扩展行为
 6
 A508III低合金钢在不同浓度硼酸溶液中的腐蚀与电化学行为
 4
 CdSe-TiO2复合材料对304不锈钢的光生阴极保护性能
 4
 Cl-对高氮不锈钢在0.5 mol/L NaOH溶液中腐蚀行为的影响
 4
 C和Si含量对车轮钢腐蚀行为的影响
 4
 F690超高强钢的腐蚀疲劳裂纹扩展行为及其有限元模拟
 4
 Fe-Me(Me=Co,Ni,Co-Ni)合金化层表面钝化膜的电化学行为
 4
 pH和Cl-对Cu-Cr-Zr合金电化学腐蚀的影响
 4
 X90钢热影响区在酸性介质中的电化学腐蚀行为
 4
 不锈钢在低温地热水环境中的腐蚀与结垢行为
 4
 磁场对超级铁素体不锈钢与奥氏体不锈钢腐蚀行为的影响
 4
 醋酸浓度和温度对超级13Cr不锈钢电化学腐蚀行为的影响
 4
 低碳钢表面Fe-Co合金层的热扩渗制备及腐蚀电化学行为
 4
 电解锰在NaCl溶液中的腐蚀行为
 4
 高铬铁素体不锈钢447在浓H2SO4溶液中的腐蚀电化学行为
 4
 铬含量对低合金钢耐氯离子腐蚀的影响规律和机制
 4
 含聚合物油田采出水的腐蚀电化学试验
 4
 基于元胞自动机法的铝合金腐蚀行为模拟
 4
 硫酸溶液中Fe3+对TC4腐蚀行为的影响
 4
 氯离子侵蚀下异类钢筋的腐蚀行为
 4
 某电厂3号机组发电机内冷水系统碱性富氧运行工况评价
 4
 凝汽器管在循环冷却水中的腐蚀评价方法
 4
 泡沫钛制备工艺及应用的研究进展
 4
 汽轮机叶片用1Cr13钢在初凝水中的腐蚀特性
 4
 热喷涂复合牺牲阳极在混凝土中的电化学性能
 4
 深海环境中静水压对2205钢腐蚀电化学行为的影响
 4
 时间、pH和Cl-对既成膜管线钢腐蚀电化学行为的影响
 4
 塑变拉应力下304不锈钢在稀硫酸中的腐蚀电化学行为
 4
 酸性土壤中的模拟滞留液溶液对X80钢腐蚀行为的影响
 4