搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
电流辅助累积叠轧镁/铝层状复合板的微观形貌及力学性能
          
Microstructure and Mechanical Properties of Mg/Al Multilayered Composite Sheet by Electrically-Assisted Accumulative Roll Bonding

摘    要
采用电流密度约1×108 A·m-2的电流辅助累积叠轧工艺制备镁/铝层状复合板,研究了不同道次(1~3道次)轧制后的微观形貌和力学性能,揭示了电流辅助工艺对复合板界面结合性能和界面金属间化合物形成的影响。结果表明:电流辅助累积叠轧后,镁/铝界面结合良好,随着叠轧道次的增加,镁层出现越来越严重的颈缩现象;电流的引入抑制了界面金属间化合物的形成,镁/铝界面处元素呈现互扩散特征,形成了厚约3 μm的原子扩散层,且其厚度并未随叠轧道次的增加而明显增大;随着叠轧道次的增加,复合板的抗拉强度和硬度均先增后降,伸长率则持续下降;镁层在电流辅助累积叠轧过程中发生的颈缩断裂以及电流对镁层和铝层的加速再结晶作用,导致3道次叠轧后复合板力学性能的降低。
标    签 电流辅助累积叠轧   镁/铝层状复合板   微观结构   力学性能   electrically-assisted accumulative roll bonding   Mg/Al multilayered composite sheet   microstructure   mechanical property  
 
Abstract
Mg/Al multilayered composite sheets were fabricated by electrically-assisted accumulative roll bonding with a current density of about 1×108 A·m-2. The microstructure and mechanical properties after roll bonding with different number of cylces (1-3 cycles) were studied, and the effect of the electrically-assisted process on the interfacial bonding of the composite sheet and the formation of interfacial intermetallic compounds were revealed. The results show that after the electrically-assisted accumulative roll bonding, the interface between Mg/Al layers was well bonded. With the increase of the roll bonding cycle, the necking of the Mg layer became more and more severe. The introduction of current suppressed the formation of interfacial intermetallic compounds. The elements at the Mg/Al interface presented interdiffusion characteristics, and a 3 μm thick atomic diffusion layer was formed, whose thickness did not increase significantly with the increase of the roll bonding cycle. With the increase of the roll bonding cycle, the tensile strength and hardness of the composite sheet increased first and then decreased, while the elongation decreased. The necking and fracture of the Mg layer during the electrically-assisted accumulative roll bonding process and the accelerated recrystallization of the Mg and Al layers caused by the current resulted in the reduction of the mechanical properties of the composite sheet after three-pass roll bonding.

中图分类号 TG146.23 TG335.13   DOI 10.11973/jxgccl201912001

 
  中国光学期刊网论文下载说明


所属栏目 试验研究

基金项目 国家自然科学基金资助项目(51671132)

收稿日期 2018/12/10

修改稿日期 2019/11/19

网络出版日期

作者单位点击查看

备注彭治力(1994-),男,四川广元人,硕士研究生

引用该论文: PENG Zhili,YAN Jiawei,TANG Jingzhao,SHEN Yao. Microstructure and Mechanical Properties of Mg/Al Multilayered Composite Sheet by Electrically-Assisted Accumulative Roll Bonding[J]. Materials for mechancial engineering, 2019, 43(12): 1~6
彭治力,颜家维,唐靖钊,沈耀. 电流辅助累积叠轧镁/铝层状复合板的微观形貌及力学性能[J]. 机械工程材料, 2019, 43(12): 1~6


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】GHADERI S H, MORI A, HOKAMOTO K. Analysis of explosively welded aluminum:AZ31 magnesium alloy joints[J]. Materials Transactions, 2008, 49(5):1142-1147.
 
【2】CHEN Z J, LIU Q, WANG G J, et al. Deformation inhomogeneities of Mg-Al laminated metal composites fabricated by accumulative roll bonding[J]. Materials Research Innovations, 2015, 19(S4):147-151.
 
【3】LIU F, LIANG W, LI X, et al. Improvement of corrosion resistance of pure magnesium via vacuum pack treatment[J]. Journal of Alloys and Compounds, 2008, 461(1):399-403.
 
【4】HUANG X, SUZUKI K, CHINO Y, et al. Influence of aluminum content on the texture and sheet formability of AM series magnesium alloys[J]. Materials Science and Engineering:A, 2015, 633:144-153.
 
【5】LIU X B, CHEN R S, HAN E H. Preliminary investigations on the Mg-Al-Zn/Al laminated composite fabricated by equal channel angular extrusion[J]. Journal of Materials Processing Technology, 2009, 209(10):4675-4681.
 
【6】VALIEV R Z, ISLAMGALIEV R K, ALEXANDROV I V. Bulk nanostructured materials from severe plastic deformation[J]. Progress in Materials Science, 2000, 45(2):103-189.
 
【7】KAWASAKI M, AHN B, LEE H, et al. Using high-pressure torsion to process an aluminum-magnesium nanocomposite through diffusion bonding[J]. Journal of Materials Research, 2015, 31(1):88-99.
 
【8】董传勇, 薛克敏, 李琦,等. 高压扭转法制备粉末块体超细晶材料[J]. 浙江科技学院学报, 2009, 21(3):206-209.
 
【9】SAITO Y, TSUJI N, UTSUNOMIYA H, et al. Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process[J]. Scripta Materialia, 1998, 39(9):1221-1227.
 
【10】SAITO Y, UTSUNOMIYA H, TSUJI N, et al. Novel ultra-high straining process for bulk materials:Development of the accumulative roll-bonding (ARB) process[J]. Acta Materialia, 1999, 47(2):579-583.
 
【11】TSUJI N, SAITO Y, LEE S H, et al. ARB (Accumulative Roll-Bonding) and other new techniques to produce bulk ultrafine grained materials[J]. Advanced Engineering Materials, 2003, 5(5):338-344.
 
【12】JIANG L, PÉREZ-PRADO M T, GRUBER P A, et al. Texture, microstructure and mechanical properties of equiaxed ultrafine-grained Zr fabricated by accumulative roll bonding[J]. Acta Materialia, 2008, 56(6):1228-1242.
 
【13】LI B L, TSUJI N, KAMIKAWA N. Microstructure homogeneity in various metallic materials heavily deformed by accumulative roll-bonding[J]. Materials Science and Engineering:A, 2006, 423(1/2):331-342.
 
【14】TERADA D, INOUE S, TSUJI N. Microstructure and mechanical properties of commercial purity titanium severely deformed by ARB process[J]. Journal of Materials Science, 2007, 42(5):1673-1681.
 
【15】PÉREZ-PRADO M T, VALLE D, RUANO O A. Grain refinement of Mg-Al-Zn alloys via accumulative roll bonding[J]. Scripta Materialia, 2004, 51(11):1093-1097.
 
【16】GHALANDARI L, MAHDAVIAN M M, REIHANIAN M. Microstructure evolution and mechanical properties of Cu/Zn multilayer processed by accumulative roll bonding (ARB)[J]. Materials Science and Engineering:A, 2014, 593:145-152.
 
【17】ZHANG X P, YANG T H, LIU J Q, et al. Mechanical properties of an Al/Mg/Al trilaminated composite fabricated by hot rolling[J]. Journal of Materials Science, 2010, 45(13):3457-3464.
 
【18】ZHANG X P, YANG T H, CASTAGNE S, et al. Microstructure; bonding strength and thickness ratio of Al/Mg/Al alloy laminated composites prepared by hot rolling[J]. Materials Science and Engineering:A, 2011, 528(4/5):1954-1960.
 
【19】LUO C Z, LIANG W, CHEN Z Q, et al. Effect of high temperature annealing and subsequent hot rolling on microstructural evolution at the bond-interface of Al/Mg/Al alloy laminated composites[J]. Materials Characterization, 2013, 84:34-40.
 
【20】ZHANG B, YUAN S Q, CHEN Z W, et al. Interface properties of multi-layered Al/Mg alloy composites materials produced by accumulative roll bonding (ARB) process[C]//2015 International Conference on Advanced Material Engineering. Guangzhou:World Scientific, 2015.
 
【21】CHEN M C, HSIEH H C, WU W T. The evolution of microstructures and mechanical properties during accumulative roll bonding of Al/Mg composite[J]. Journal of Alloys and Compounds, 2006, 416(1/2):169-172.
 
【22】CHANG H, ZHENG M Y, GAN W M, et al. Texture evolution of the Mg/Al laminated composite fabricated by the accumulative roll bonding[J]. Scripta Materialia, 2009, 61(7):717-720.
 
【23】NIE J F, LIU M X, WANG F, et al. Fabrication of Al/Mg/Al composites via accumulative roll bonding and their mechanical properties[J]. Materials, 2016, 9(11):951.
 
【24】WU K, CHANG H, MAAWAD E, et al. Microstructure and mechanical properties of the Mg/Al laminated composite fabricated by accumulative roll bonding (ARB)[J]. Materials Science and Engineering:A, 2010, 527(13/14):3073-3078.
 
【25】KLIMOV K M, NOVIKOV I I. Absence of strain hardening upon electrostimulated rolling of metals under cold conditions[J]. Doklady Physics, 2007, 52(7):359-360.
 
【26】BAZAYKIN V I, GROMOV V E, KUZNETSOV V A, et al. Mechanics of electrostimulated wire drawing[J]. International Journal of Solids and Structures, 1991, 27(13):1639-1643.
 
【27】丁俊豪, 李恒, 边天军, 等. 电塑性及电流辅助成形研究动态及展望[J]. 航空学报, 2018, 39(1):021201.
 
【28】SHAO H, CAI L L, SHAN D, et al. Microstructure and high strength-ductility synergy of Ti-6Al-4V alloy induced by joule heat treatment[J]. Journal of Materials Science, 2018, 53(24):16609-16617.
 
【29】TROITSKII O A, LIKHTMAN V I. The anisotropy of the action of electron and gamma radiation on the deformation of zinc single crystals in the brittle state[J].Soviet Physics Doklady, 1963, 8:91-91.
 
【30】AGNEW S R, DUYGULU Ö. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B[J]. International Journal of Plasticity, 2005, 21(6):1161-1193.
 
【31】LIU C Y, WANG Q, JIA Y Z, et al. Microstructures and mechanical properties of Mg/Mg and Mg/Al/Mg laminated composites prepared via warm roll bonding[J]. Materials Science and Engineering:A, 2012, 556:1-8.
 
【32】LEE K S, KIM J S, JO Y M, et al. Interface-correlated deformation behavior of a stainless steel-Al-Mg 3-ply composite[J]. Materials Characterization, 2013, 75:138-149.
 
相关信息
   标题 相关频次
 Ti(C,N)含量对无压烧结Ti(C,N)/ZrO2陶瓷复合材料微观结构和性能的影响
 4
 TiC含量对无压烧结TiC/ZrO2导电陶瓷复合材料微观结构和性能的影响
 4
 TiC含量对无压烧结TiC-Al2O3导电陶瓷复合材料微观结构与性能的影响
 4
 芳纶纤维增强尼龙6复合材料的制备与性能
 4
 环氧泡沫材料的力学性能及微观结构
 4
 基体偏压对磁控溅射制备CrAlN纳米多层薄膜微观结构和力学性能的影响
 4
 脉冲射流电铸纳米晶铜的组织与性能
 4
 射流电铸快速成型纳米晶铜的组织与性能
 4
 06Cr19Ni10不锈钢/A283低碳钢扩散焊接接头的显微组织和力学性能
 3
 06Cr20Ni11钢埋弧焊焊缝的显微组织和性能
 3
 1060铝在累积轧制中组织和性能的演变
 3
 10Ni5CrMoV钢MAG焊接接头的显微组织与力学性能
 3
 12Cr13钢预热处理工艺参数优化
 3
 12Cr1MoV钢过热器爆管的显微组织和力学性能
 3
 16Mo3钢大直径大变形量试制中频弯管的组织与性能
 3
 2024铝合金电子束焊接接头的显微组织与力学性能
 3
 20Cr钢与B级钢焊接接头的组织和性能
 3
 2205双相不锈钢/Q345低合金钢爆炸复合板的组织与力学性能
 3
 240 MPa级高强IF钢的冷轧压下率和退火温度
 3
 300 MW机组锁口叶片断裂原因分析
 3
 3003铝合金无缝管制备过程中的显微组织与力学性能变化
 3
 3D打印18Ni300模具钢的显微组织及力学性能
 3
 5 mm厚6005A-T6铝合金双轴肩搅拌摩擦焊接头的组织及性能
 3
 5 mm厚6082-T6铝合金双轴肩搅拌摩擦焊接头的组织与性能
 3
 5083/6063不等厚铝合金双丝CMT角焊接头的组织与性能
 3
 550 MPa级高强度高延性汽车方管用钢的显微组织与力学性能
 3
 600 MPa级热轧双相钢的动态连续冷却转变行为及其热轧卷取工艺的优化
 3
 600 MW机组次末级叶片断裂原因分析
 3
 6061-T6铝合金超声辅助搅拌摩擦焊接头的组织与力学性能
 3
 6061-T6铝合金搅拌摩擦焊接头的组织和性能
 3