扫一扫 加微信
首页 > 期刊论文 > 论文摘要
矫顽力在碳钢热处理质量预评定中的应用
          
Application of Coercivity Force in Pre-evaluation of Heat Treatment Quality

摘    要
常规的热处理质量评定方法需对材料进行破坏性加工,效率低下,且不适用于产品批量检验。针对这一缺点,提出基于矫顽力(Hc)的磁滞无损评估方法,研究了不同热处理条件下,碳钢显微组织及力学性能与矫顽力的关系。结果表明:碳钢3种典型显微组织对应不同的矫顽力水平,其顺序为Hc马氏体 > Hc珠光体 > Hc铁素体;常用力学性能指标与矫顽力近似成线性关系;通过测定矫顽力既可以快速辨别碳钢的显微组织,又能对力学性能实现定量预测,因此可用于其热处理质量的预评定。
标    签 矫顽力   热处理   显微组织   力学性能   预评定   coercivity force   heat treatment   microstructure   mechanical property   pre-evaluation  
 
Abstract
Conventional methods of heat treatment quality evaluation need destructive processing of materials, which were inefficient and unsuitable for products batch inspection. Then, a magnetic nondestructive evaluation method based on coercivity(Hc) was proposed, and the relationship between the microstructure, mechanical properties and coercivity force of carbon steel under different heat treatment conditions were studied. The results show that three typical microstructures of carbon steel corresponded to different coercivity force levels, the order of which was Hc (martensite) > Hc (pearlite) > Hc (ferrite). The common mechanical properties were approximately linear with coercivity force. Though measuring coercivity force could not only identify the microstructure of carbon steel quickly, but also predict the mechanical properties quantitatively, this could be used to pre-evaluate the carbon steel of heat treatment quality.

中图分类号 TG115   DOI 10.11973/lhjy-wl202002001

 
  中国光学期刊网论文下载说明


所属栏目 试验与研究

基金项目 宁波市质量技术监督局科技项目(2019);浙江省质量技术基础建设项目(20180119)

收稿日期 2019/3/22

修改稿日期

网络出版日期

作者单位点击查看

备注沈正祥(1984-),男,副研究员,主要从事特种设备安全管理监督工作,shenzx84@163.com

引用该论文: SHEN Zhengxiang,NIU Yaping,CHEN Hu,WANG Du,CAI Penghui,WU Junlin,HU Yingjie. Application of Coercivity Force in Pre-evaluation of Heat Treatment Quality[J]. Physical Testing and Chemical Analysis part A:Physical Testing, 2020, 56(2): 1~5
沈正祥,牛亚平,陈虎,王杜,蔡鹏辉,吴俊霖,胡荥杰. 矫顽力在碳钢热处理质量预评定中的应用[J]. 理化检验-物理分册, 2020, 56(2): 1~5


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】路胜卓. 磁记忆用于材料热处理质量评估的方法研究[D]. 哈尔滨:哈尔滨工业大学,2007.
 
【2】KULEEV V G,TSARKOVA T P. Effect of plastic deformations and heat treatment on the behavior of the coercive force under load[J]. The Physics of Metals and Metallography,2007,104(5):461-468.
 
【3】MIERCZAK L,JILES D C,FANTONI G. A new method for evaluation of mechanical stress using the reciprocal amplitude of magnetic barkhausen noise[J]. IEEE Transactions on Magnetics,2011,47(2):459-465.
 
【4】JILES D C. Review of magnetic methods for nondestructive evaluation[J]. NDT International,1988,21(5):311-319.
 
【5】BATISTA L,RABE U,ALTPETER I,et al. On the mechanism of nondestructive evaluation of cementite content in steels using a combination of magnetic Barkhausen noise and magnetic force microscopy techniques[J]. Journal of Magnetism and Magnetic Materials,2014,354:248-256.
 
【6】BYEON J W,KWUN S I. Magnetic nondestructive evaluation of thermally degraded 2.25Cr-1Mo steel[J]. Materials Letters,2004,58(1/2):94-98.
 
【7】GHANEI S,SAHEB ALAM A,KASHEFI M,et al. Nondestructive characterization of microstructure and mechanical properties of intercritically annealed dual-phase steel by magnetic Barkhausen noise technique[J]. Materials Science and Engineering:A,2014,607(23):253-260.
 
【8】GHANEI S,KASHEFI M,MAZINANI M. Comparative study of eddy current and Barkhausen noise nondestructive testing methods in microstructural examination of ferrite-martensite dual-phase steel[J]. Journal of Magnetism and Magnetic Materials,2014,356:103-110.
 
【9】TANNER B K,SZPUNAR J A,WILLCOCK S N M,et al. Magnetic and metallurgical properties of high-tensile steels[J]. Journal of Materials Science,1988,23(12):4534-4540.
 
【10】YOSHINO M,TANABE H,SAKAMOTO T,et al. Nondestructive measurement of grain size in steel plates by using magnetic coercive force[J]. Materials Science Forum,1996,210:45-54.
 
【11】BIDA G V,NICHIPURUK A P. Coercive force measurements in nondestructive testing[J]. Russian Journal of Nondestructive Testing,2000,36(10):707-727.
 
【12】MÁLEK Z. A study of the influence of dislocations on some of the magnetic properties of permalloy alloys[J]. Czechoslovak Journal of Physics,1959,9(5):613-626.
 
【13】杨理践,孙宏亮,高松巍,等. 基于矫顽力的钢板应力检测技术[J]. 无损检测,2018,40(3):5-9.
 
【14】孙燕华. Q245R钢磁特性对应力的映射规律研究[D].济南:山东大学,2016.
 
【15】BYEON J W,KWUN S I. Evaluation of microstructures of variously heat treated carbon steel by magnetic coectivity measurement[J]. Physica Status Solidi (b),2004,241(7):1697-1700.
 
【16】计云萍,刘宗昌,任慧平,等. 高碳钢中马氏体的组织结构及形成机制[J]. 机械工程材料,2013,37(3):1-4.
 
【17】LO C C H,JAKUBOVICS J P,SCRUBY C B. Monitoring the microstructure of pearlitic steels by magnetoacoustic emission[J]. Journal of Applied Physics,1997,81(8):4069-4071.
 
【18】MOHAPATRA J N,MOHANTY S,DABBIRU S K,et al. Correlation of magnetic properties with mechanical properties of a high tensile grade steel in various heat treated conditions[J]. Transactions of the Indian Institute of Metals,2018,71(10):2361-2374.
 
【19】SANDOMIRSKII S G. Estimation of the ultimate tensile strength of steel from its HB and HV hardness numbers and coercive force[J]. Russian Metallurgy (Metally),2017,11:989-993.
 
相关信息
   标题 相关频次
 蓄能器承压壳体热处理效果的无损评估
 7
 960MPa级含钼低碳钢钼含量与热处理工艺的确定
 6
 焊后热处理对12Cr1MoV钢管焊接接头组织与性能的影响
 6
 焊前和焊后热处理对2195铝锂合金双面搅拌摩擦焊接头组织与性能的影响
 6
 热处理工艺对含铌GH2132合金组织和性能的影响
 6
 热处理前后镍基高温合金激光熔覆层的组织和力学性能
 6
 GH648合金的热处理适应性
 5
 铝含量对TB5钛合金组织和力学性能的影响
 5
 热处理对A286铁基高温合金激光焊接接头组织和性能的影响
 5
 热处理温度对X12CrNi13马氏体不锈钢组织和力学性能的影响
 5
 06Cr19Ni10不锈钢/A283低碳钢扩散焊接接头的显微组织和力学性能
 4
 06Cr20Ni11钢埋弧焊焊缝的显微组织和性能
 4
 10Ni5CrMoV钢MAG焊接接头的显微组织与力学性能
 4
 12Cr13钢预热处理工艺参数优化
 4
 12Cr1MoV钢过热器爆管的显微组织和力学性能
 4
 16Mo3钢大直径大变形量试制中频弯管的组织与性能
 4
 2024铝合金电子束焊接接头的显微组织与力学性能
 4
 240 MPa级高强IF钢的冷轧压下率和退火温度
 4
 300 MW机组锁口叶片断裂原因分析
 4
 3003铝合金无缝管制备过程中的显微组织与力学性能变化
 4
 3D打印18Ni300模具钢的显微组织及力学性能
 4
 5 mm厚6005A-T6铝合金双轴肩搅拌摩擦焊接头的组织及性能
 4
 5 mm厚6082-T6铝合金双轴肩搅拌摩擦焊接头的组织与性能
 4
 550 MPa级高强度高延性汽车方管用钢的显微组织与力学性能
 4
 600 MPa级热轧双相钢的动态连续冷却转变行为及其热轧卷取工艺的优化
 4
 600 MW机组次末级叶片断裂原因分析
 4
 6061-T6铝合金搅拌摩擦焊接头的组织和性能
 4
 6061铝合金激光填丝焊接接头的组织与力学性能
 4
 6082-T6铝合金搅拌摩擦焊接头的显微组织与力学性能
 4
 7075/6009铝合金层状复合板材的固溶时效热处理工艺
 4