搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
基于变形特征值及特征状态参数的金属材料高温变形本构方程
          
High Temperature Deformation Constitutive Equation of Metal Materials Based on Deformation Eigenvalues and Characteristic State Parameters

摘    要
基于变形特征值(σssσpεpεr)及特征状态参数(LM,Z,erf,MTS参数),建立了一个描述金属材料高温变形的本构方程,包括高温变形过程方程和特征参数方程,并通过商业纯铝、无氧铜、超低碳钢的高温压缩试验,对该本构方程的计算准确度进行了验证。结果表明:使用该本构方程计算得到的纯铝和超低碳钢的高温变形结果与试验结果吻合性较好,其峰值应力计算值与试验值的相对误差均小于10%,但无氧铜的却达到了15%,模拟计算精度略低;该本构方程可用于预测纯铝和超低碳钢在热加工变形条件下的流变应力。
标    签 本构方程   高温变形   流变应力   纯铝   无氧铜   超低碳钢   constitutive equation   high temperature deformation   flow stress   pure aluminum   oxygen free copper   ultra-low carbon steel  
 
Abstract
A constitutive equation for high temperature deformation of metal materials, including high temperature deformation process equation and characteristic parameter equation, was established based on the deformation eigenvalues (σss,σp,εp,εr) and characteristic state parameters (LM, Z, erf, MTS). By the high temperature compression test of commercial pure aluminum, oxygen free copper and ultra-low carbon steel, the calculation accuracy of the constitutive equation was verified. The results show that the high temperature deformation results of pure aluminum and ultra-low carbon steel calculated by the constitutive equation were in agreement with the test results. The relative error between the calculated values and the test values of the peak stress of pure aluminum and ultra-low carbon steel was less than 10%, while that of oxygen free copper was up to 15%, indicating that the calculation accuracy of oxygen free copper was slightly lower. The constitutive equation can be used to predict the flow stress of pure aluminum and ultra-low carbon steel under the condition of hot working deformation.

中图分类号 TG142.7   DOI 10.11973/jxgccl202002014

 
  中国光学期刊网论文下载说明


所属栏目 物理模拟与数值模拟

基金项目

收稿日期 2019/2/26

修改稿日期 2020/1/14

网络出版日期

作者单位点击查看

备注曹金荣(1966-),男,宁夏石嘴山人,教授级高级工程师,博士

引用该论文: CAO Jinrong. High Temperature Deformation Constitutive Equation of Metal Materials Based on Deformation Eigenvalues and Characteristic State Parameters[J]. Materials for mechancial engineering, 2020, 44(2): 73~78
曹金荣. 基于变形特征值及特征状态参数的金属材料高温变形本构方程[J]. 机械工程材料, 2020, 44(2): 73~78


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】VOCE E. The relationship between stress and strain for homogeneous deformation[J].Journal of the Institute of Metals, 1948, 74:537-540.
 
【2】MISAKA Y, YOSHIMOTO T. Formularization of mean resistance to deformation of plain carbon steels at elevated temperature[J].Journal of the Japan Society Technology Plasticity, 1967, 8(79):414-422.
 
【3】SAH J P,RICHARDSON G J,SELLARS C M.Recrystallization during hot deformation of nickel[J]. Journal of the Australian Institute, 1969, 14(4):292-297.
 
【4】JOHNSON G R,COOK W H.A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the Seventh International Symposium on Ballistics, Hague, Nethedands:[s.n.], 1983.
 
【5】BERGSTRÖM Y. A dislocation model for the stress-strain behaviour of polycrystalline α-Fe with special emphasis on the variation of the densities of mobile and immobile dislocations[J].Materials Science and Engineering, 1970,5(4):193-200.
 
【6】ESTRIN Y, MECKING H.A unified phenomenological description of work hardening and creep based on one-parameter models[J].Acta Metallurgica,1984,32(1):57-70.
 
【7】ZERILLI F J,ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations[J].Journal of Applied Physics, 1987,61(5):1816-1825.
 
【8】FOLLANSBEE P S,KOCKS U F.A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable[J].Acta Metallurgica, 1988,36(1):81-93.
 
【9】PRESTON D L,TONKS D L,WALLACE D C.Model of plastic deformation for extreme loading conditions[J].Journal of Applied Physics, 2003,93(1):211-220.
 
【10】SELLARS C M, MCTEGART W J. On the mechanism of hot deformation[J].Acta Metallurgica,1966,14(9):1136-1138.
 
【11】LAASRAOUI A,JONAS J J. Prediction of steel flow stresses at high temperatures and strain rates[J].Metallurgical Transactions A, 1991,22(7):1545-1558.
 
【12】CABRERA J M,AL OMAR A,PRADO J M,et al. Modeling the flow behavior of a medium carbon microalloyed steel under hot working conditions[J].Metallurgical and Materials Transactions A, 1997,28(11):2233-2244.
 
【13】CAO J R, LIU Z D,CHENG S C,et al. Constitutive equation models of hot-compressed T122 heat resistant steel[J]. Journal of Iron and Steel Research,International,2012,19(6):53-58.
 
【14】VILELA J J,BARBOSA R.Prediction of stress-strain curves of hot deformed IF austenite[J].ISIJ International, 2002,42(3):319-321.
 
【15】JONAS J J, QUELENNEC X, JIANG L, et al. The Avrami kinetics of dynamic recrystallization[J].Acta Materialia, 2009, 57(9):2748-2756.
 
【16】QUELENNEC X,JONAS J J.Simulation of austenite flow curves under industrial rolling conditions using a physical dynamic recrystallization model[J].ISIJ International, 2012,52(6):1145-1152.
 
【17】BAMMANN D J, CHIESA M L, JOHNSON G C. A state variable damage model for temperature and strain rate dependent materials[C]//Constitutive Laws:Theory, Experiments and Numerical Implementation. Mauna Lani, Hawaii:[s.n.], 1995.
 
【18】ROWN A A,BAMMANN D J.Validation of a model for static and dynamic recrystallization in metals[J].International Journal of Plasticity, 2012,32/33:17-35.
 
【19】BROWN S,KIM K,ANAND L.An internal variable constitutive model for hot working of metals[J].International Journal of Plasticity, 1989,5(2):95-130.
 
【20】PRASAD Y, RAO K P. Influence of oxygen on rate-controlling mechanisms in hot deformation of polycrystalline copper:Oxygen-free versus electrolytic grades[J]. Materials Letters,2004,58(14):2061-2066.
 
【21】PRASAD Y, RAO K P. Kinetics of high-temperature deformation of polycrystalline OFHC copper and the role of dislocation core diffusion[J]. Philosophical Magazine, 2004, 84(28):3039-3050.
 
【22】PRASAD Y, RAO K P. Kinetics and dynamics of hot deformation of OFHC copper in extended temperature and strain rate ranges[J]. Materials Research and Advanced Techniques,2005, 96(1):71-77.
 
【23】PUCHI-CABRERA E S, GUÉRIN J D, DUBAR M, et al. A novel approach for modeling the flow stress curves of austenite under transient deformation conditions[J]. Materials Science and Engineering:A, 2016, 673:660-670.
 
相关信息
   标题 相关频次
 10B06冷镦钢连铸坯的热压缩流变行为
 4
 2219铝合金热压缩时的流变应力本构方程
 4
 60Si2CrVAT高强度弹簧钢的热压缩变形本构方程
 4
 AA5083合金在200~525℃的拉伸流变行为
 4
 Fe-3.0% Si-0.09% Nb取向硅钢的高温流变应力
 4
 FV520B马氏体不锈钢的热变形行为和本构关系
 4
 HG700汽车大梁钢的热变形行为及流变应力本构模型的建立
 4
 低碳钢高温变形行为及其本构方程的建立
 4
 铅镁铝合金热压缩变形条件对流变应力的影响及其本构方程的建立
 4
 新型TA32钛合金板的高温拉伸变形行为
 4
 铸态GCr15SiMn轴承钢的流变应力本构方程
 4
 TC1钛合金的高温流变行为
 3
 Ti2AlNb合金的高温拉伸变形行为
 3
 匀强电场作用下纯铝在480℃的拉伸变形行为
 3
 0.5%石墨烯增强铝基复合材料的热变形行为
 2
 20Cr2Ni4A钢的高温热变形行为及热加工图
 2
 2524铝合金的蠕变时效行为及本构方程
 2
 40CrNi2MoE钢的高温塑性变形特征
 2
 40CrNiMo钢的热变形特征及变形抗力模型
 2
 7039铝合金的热压缩变形本构方程
 2
 7075/6009铝合金复合材料热压缩变形的本构方程
 2
 7075铝合金热压缩动态软化行为的本构模型
 2
 7B50铝合金的热压缩变形行为
 2
 AerMet100钢热压缩过程流变应力模型
 2
 Al2O3掺杂与超声辅助对纯铝表面微弧氧化层结构与性能的影响
 2
 Al-1.1Mn-0.3Mg-0.25RE合金的热变形行为及其加工图
 2
 Al-8.8Zn-1.4Mg-0.5Cu-0.1Sc-0.1Er-0.1Zr合金的热变形行为及热加工图
 2
 AZ31镁合金的热变形行为及加工图
 2
 AZ61镁合金的热压缩变形行为及组织演变
 2
 BT20钛合金热变形流变应力的预测模型
 2