搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
纳秒激光加工和热处理对纯铝表面润湿性的影响
          
Effect of Nanosecond Laser Machining and Heat-Treatment on Wettability of Pure Aluminum Surface

摘    要
采用纳秒激光加工技术在纯铝板表面制备微纳米结构,之后进行150 ℃×2 h的热处理,研究激光扫描间距(0.005~0.020 mm)、扫描速度(100~1 700 mm·s-1)与热处理对激光烧蚀表面润湿性的影响。结果表明:不同工艺参数下激光烧蚀后纯铝板表面均形成了相对规则的微纳米网格结构;激光烧蚀后的纯铝板表面为超亲水表面,再经热处理后变为疏水表面或超疏水表面;随着扫描速度和扫描间距的增大,激光烧蚀和热处理后,纯铝板表面的接触角变化不明显,滑动角增大,表现出不同程度的润湿性;在激光扫描速度为100 mm·s-1,扫描间距为0.005 mm下激光烧蚀与热处理后,纯铝板表面微纳米结构致密,其接触角为155.6°,滑动角为4°,超疏水性最佳。
标    签 纳秒激光   纯铝   超疏水   微纳米结构   接触角   nanosecond laser   pure aluminum   super-hydrophobicity   micro-nano structure   contact angle  
 
Abstract
The micro-nano structure was prepared on the surface of pure aluminum plate by nanosecond laser machining technique, and then was heat-treated at 150 ℃ for 2 h. The effect of laser scanning interval (0.005-0.020 mm), scanning speed (100 -1 700 mm·s-1) and heat treatment on the wettability of the pure aluminum plate surface after laser ablation was studied. The results show that the regular micro-nano grid structure was formed on the surface of pure aluminum plate after laser ablation with different process parameters. The pure aluminum plate surface after laser ablation was super hydrophilic, and after heat treatment changed to be hydrophobic or even super-hydrophobic. With increasing scanning speed and scanning interval, the contact angle of pure aluminum plate surface after laser ablation and heat treatment changed little, and the sliding angle increased; the surface showed different degrees of wettability. After laser ablation with laser scanning speed of 100 mm·s-1 and scanning interval of 0.005 mm and heat treatment, the pure aluminum plate surface had dense micro-nano structure, and the best super-hydrophobicity with contact angle of 155.6° and sliding angle of 4°.

中图分类号 TH142.3   DOI 10.11973/jxgccl202005013

 
  中国光学期刊网论文下载说明


所属栏目 专题报道(金属材料表面处理)

基金项目 天津市自然科学基金资助项目(17JCYBJC42400);天津市教委基金科研项目(2017KJ020);天津市企业科技特派员资助项目(19JCTPJC42800)

收稿日期 2019/5/6

修改稿日期 2020/4/15

网络出版日期

作者单位点击查看

备注马林旭(1980-),男,河北高阳人,副教授,硕士

引用该论文: MA Linxu,WANG Lina,LI Chengying,GUO Jian,DENG Cui,ZHAO Jingnan. Effect of Nanosecond Laser Machining and Heat-Treatment on Wettability of Pure Aluminum Surface[J]. Materials for mechancial engineering, 2020, 44(5): 66~71
马林旭,王丽娜,李成营,郭健,邓翠,赵静楠. 纳秒激光加工和热处理对纯铝表面润湿性的影响[J]. 机械工程材料, 2020, 44(5): 66~71


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】TADANAGA K,MORINAGA J,MATSUDA A,et al.Superhydrophobic-superhydrophilic micropatterning on flowerlike alumina coating film by the sol-gel method[J].Chemistry of Materials, 2000,12(3):590-592.
 
【2】LIU Z Y,ZHANG X T,MURAKAMI T,et al.Sol-gel SiO2/TiO2 bilayer films with self-cleaning and antireflection properties[J].Solar Energy Materials and Solar Cells, 2008,92(11):1434-1438.
 
【3】PENG S,BHUSHAN B.Mechanically durable superoleophobic aluminum surfaces with microstep and nanoreticula hierarchical structure for self-cleaning and anti-smudge properties[J].Journal of Colloid and Interface Science, 2016,461:273-284.
 
【4】NISHIMOTO S,BHUSHAN B. Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity[J].RSC Advances, 2013,3(3):671-690.
 
【5】SHIN S,SEO J,HAN H,et al.Bio-inspired extreme wetting surfaces for biomedical applications[J].Materials,2016,9(2):116.
 
【6】MOREHEAD J,ZOU M.Superhydrophilic surface on Cu substrate to enhance lubricant retention[J].Journal of Adhesion Science and Technology, 2014,28(8/9):833-842.
 
【7】CHUN Y,LEVI D S,MOHANCHANDRA K P,et al.Superhydrophilic surface treatment for thin film NiTi vascular applications[J].Materials Science and Engineering:C, 2009,29(8):2436-2441.
 
【8】ZORBA V,STRATAKIS E,BARBEROGLOU M,et al.Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf[J].Advanced Materials, 2008,20(21):4049-4054.
 
【9】ZHAO J N,SHROTRIYA P.Increase the hardness of polycrystalline cubic/wurtzite boron nitride composite through hybrid laser/waterjet heat (LWH) treatment[J].Advances in Applied Ceramics, 2017,116(6):333-340.
 
【10】RAO A V,LATTHE S S,MAHADIK S A,et al.Mechanically stable and corrosion resistant superhydrophobic sol-gel coatings on copper substrate[J].Applied Surface Science, 2011,257(13):5772-5776.
 
【11】AHMAD KAMAL S A,RITIKOS R,ABDUL RAHMAN S.Wetting behaviour of carbon nitride nanostructures grown by plasma enhanced chemical vapour deposition technique[J].Applied Surface Science, 2015,328:146-153.
 
【12】ZHAO J N,WONG K S,SHROTRIYA P.Hybrid CO2 laser waterjet heat (LWH) treatment of bindered boron nitride composites with hardness improvement[J].Ceramics International, 2017,43(11):8031-8039.
 
【13】CRICK C R,BEAR J C,KAFIZAS A,et al.Superhydrophobic photocatalytic surfaces through direct incorporation of titania nanoparticles into a polymer matrix by aerosol assisted chemical vapor deposition[J].Advanced Materials, 2012,24(26):3505-3508.
 
【14】LIU Y,YIN X M,ZHANG J J,et al.Biomimetic hydrophobic surface fabricated by chemical etching method from hierarchically structured magnesium alloy substrate[J].Applied Surface Science, 2013,280:845-849.
 
【15】ZHAO J N,GUO J,SHROTRIYA P,et al.A rapid one-step nanosecond laser process for fabrication of super-hydrophilic aluminum surface[J].Optics & Laser Technology, 2019,117:134-141.
 
【16】CHEN Z,HAO L M,CHEN A Q,et al.A rapid one-step process for fabrication of superhydrophobic surface by electrodeposition method[J].Electrochimica Acta, 2012,59:168-171.
 
【17】ZHAO Y,LI M,LU Q H,et al.Superhydrophobic polyimide films with a hierarchical topography:Combined replica molding and layer-by-layer assembly[J].Langmuir, 2008,24(21):12651-12657.
 
【18】刘顿,伍义刚,胡勇涛,等.皮秒激光制备铝基超疏水表面[J].激光与光电子学进展,2016,53(10):179-187.
 
【19】CHEN F,ZHANG D S,YANG Q,et al.Bioinspired wetting surface via laser microfabrication[J].ACS Applied Materials & Interfaces, 2013,5(15):6777-6792.
 
【20】VOROBYEV A Y,GUO C L.Direct femtosecond laser surface nano/microstructuring and its applications[J].Laser & Photonics Reviews, 2013,7(3):385-407.
 
【21】JAGDHEESH R,PATHIRAJ B,KARATAY E,et al.Laser-induced nanoscale superhydrophobic structures on metal surfaces[J].Langmuir, 2011,27(13):8464-8469.
 
【22】ZHANG D S,CHEN F,YANG Q,et al.A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser[J].ACS Applied Materials & Interfaces, 2012,4(9):4905-4912.
 
【23】XU K C,ZHANG C T,ZHOU R,et al.Hybrid micro/nano-structure formation by angular laser texturing of Si surface for surface enhanced Raman scattering[J].Optics Express, 2016,24(10):10352.
 
【24】ZHENG B X,JIANG G D,WANG W J,et al.Fabrication of superhydrophilic or superhydrophobic self-cleaning metal surfaces using picosecond laser pulses and chemical fluorination[J].Radiation Effects and Defects in Solids, 2016,171(5/6):461-473.
 
【25】CHANG F M,CHENG S L,HONG S J,et al.Super-hydrophilicity to superhydrophobicity transition of CuO nanowire films[J].Applied Physics Letters, 2010,96(11):114101.
 
【26】TA D V,DUNN A,WASLEY T J,et al.Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications[J].Applied Surface Science,2015,357:248-254.
 
【27】LONG J Y,ZHONG M L,FAN P X,et al.Wettability conversion of ultrafast laser structured copper surface[J].Journal of Laser Applications, 2015,27(S2):S29107.
 
【28】LONG J Y,ZHONG M L,ZHANG H J,et al.Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air[J].Journal of Colloid and Interface Science, 2015,441:1-9.
 
【29】杨奇彪,刘少军,汪于涛,等.纳秒激光诱导铝板表面超疏水微纳结构[J].激光与光电子学进展,2017,54(9):254-259.
 
【30】弯艳玲, 于化东, 徐丽宁, 等.铝合金表面超疏水微结构的纳秒激光二次扫描制备方法:201710470109.5[P].2017-10-20.
 
【31】李杰,王超磊,刘玉德,等.激光微织构与自组装对铝合金表面润湿性的影响[J].材料工程,2018,46(1):53-60.
 
【32】李杰,刘玉德,高东明,等.激光加工结合自组装制备铝合金超疏水表面[J].中国材料进展,2015,34(6):462-466.
 
【33】WENZEL R N.Resistance of solid surfaces to wetting by water[J].Industrial and Engineering Chemistry, 1936,28(8):988-994.
 
【34】KIETZIG A M,HATZIKIRIAKOS S G,ENGLEZOS P.Patterned superhydrophobic metallic surfaces[J].Langmuir, 2009,25(8):4821-4827.
 
【35】LI Z F,ZHENG Y J,ZHAO J,et al.Wettability of atmospheric plasma sprayed Fe,Ni,Cr and their mixture coatings[J].Journal of Thermal Spray Technology, 2012,21(2):255-262.
 
【36】AZIMI G,DHIMAN R,KWON H M,et al.Hydrophobicity of rare-earth oxide ceramics[J].Nature Materials, 2013,12(4):315-320.
 
【37】CHUN D M,NGO C V,LEE K M.Fast fabrication of superhydrophobic metallic surface using nanosecond laser texturing and low-temperature annealing[J].CIRP Annals,2016,65(1):519-522.
 
【38】SONG Y X,WANG C,DONG X R,et al.Controllable superhydrophobic aluminum surfaces with tunable adhesion fabricated by femtosecond laser[J].Optics & Laser Technology, 2018,102:25-31.
 
【39】CASSIE A B D,BAXTER S.Wettability of porous surfaces[J].Transactions of the Faraday Society, 1944,40:546.
 
【40】PATANKAR N A.On the modeling of hydrophobic contact angles on rough surfaces[J].Langmuir, 2003,19(4):1249-1253.
 
【41】FENG X, JIANG L.Design and creation of superwetting/antiwetting surfaces[J].Advanced Materials, 2006,18(23):3063-3078.
 
相关信息
   标题 相关频次
 纳秒激光制备超疏水TC4钛合金表面的抗结霜性能
 3
 Al2O3掺杂与超声辅助对纯铝表面微弧氧化层结构与性能的影响
 2
 S136不锈钢基体溅射氮化铬薄膜的硬度和接触角
 2
 X射线衍射法测定纳米晶纯铝的平均晶粒尺寸
 2
 X射线荧光光谱法测定铝合金及纯铝中痕量元素
 2
 玻璃纤维表面能及其与不同树脂体系的润湿特性
 2
 差热分析曲线的影响因素
 2
 超声氧化处理对碳纤维表面性能的影响
 2
 电沉积法制备316L不锈钢表面微纳结构超疏水涂层及其耐海水腐蚀性能
 2
 防海生物污损材料研究现状
 2
 防锈油对DP590钢腐蚀行为的影响
 2
 混凝土表面硅烷改性后的防腐蚀性能
 2
 基于变形特征值及特征状态参数的金属材料高温变形本构方程
 2
 激光剥蚀电感耦合等离子体质谱法测定纯铝及铝丝中铁、硅、铜、锰、镁、钛、锌、铬和镍
 2
 加热温度与保温时间对铝-硅镀层组织演变的影响
 2
 接触角测量技术的最新进展
 2
 具有超疏水表面的铜及铜合金耐蚀行为研究进展
 2
 人体血液与不同成分及表面粗糙度钛合金的润湿性
 2
 天然气集输管道积液对有机胺缓蚀性能的影响
 2
 添加CeO2对超音速火焰喷涂微纳米结构WC-10Co4Cr涂层组织和性能的影响
 2
 一种测定液体表面张力系数的新方法
 2
 “源于自然”的高效防污超疏水涂层
 1
 “源于自然”的高效防污超疏水涂层
 1
 1060工业纯铝累积叠轧后的力学性能
 1
 Angew. Chem.:超亲水/超疏气负载型CoMoSx硫族凝胶电催化全解水
 1
 Nat. Mater.:向上跑的液滴,与不用枪头的移液枪
 1
 TiB2/AlSi7Mg0.6复合材料的热处理强化
 1
 超“治愈”!研究人员开发神奇创可贴:速凝止血、易剥离还防水抗菌
 1
 超疏水玻璃纤维过滤膜用于Cu定量荧光分析
 1
 超疏水材料新进展:出淤泥而不染,被刀划而不伤
 1