搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
奥氏体不锈钢在海水环境中的腐蚀疲劳裂纹扩展行为
          
Corrosion Fatigue Crack Growth Behavior of Austenitic Stainless Steels in Seawater Environment

摘    要
研究了304,316和321不锈钢在室温~80℃的空气和海水中的腐蚀疲劳裂纹扩展行为。结果表明:三种不锈钢在海水环境中的腐蚀疲劳裂纹扩展速率明显高于在空气中的,这是由于腐蚀环境中的氢致开裂和阳极溶解对裂纹扩展起加速作用。海水对材料疲劳行为的加速作用与测试参数有关:应力强度因子幅值越小、加载频率越低,腐蚀加速作用越明显。基于Paris公式对裂纹扩展速率进行分析,结果表明,材料在室温~80℃海水中的腐蚀疲劳裂纹扩展速率符合Paris公式。
标    签 奥氏体不锈钢   海水环境   腐蚀疲劳   裂纹扩展速率   Paris公式   austenitic stainless steel   seawater environment   corrosion fatigue   crack growth rate   Paris law  
 
Abstract
The corrosion fatigue crack growth behavior of 304, 316 and 321 stainless steels in air and seawater at room temperature(RT) - 80 ℃ was studied. The results show that the corrosion fatigue crack growth rate of the three stainless steels in seawater environment was significantly higher than that in air, which was due to the accelerating effects of hydrogen-induced cracking and anodic dissolution in the corrosive environment. The acceleration effect of seawater on fatigue behavior of materials was related to the test parameters: the smaller the magnitude of the stress intensity factor and the lower the loading frequency, the more obvious the acceleration effect of corrosion. The crack growth rate was analyzed based on the Paris formula. The results show that the corrosion fatigue crack growth rate of the materials in seawater at room temperature to 80 ℃ agreed well with the Paris formula.

中图分类号 TG174   DOI 10.11973/fsyfh-202007011

 
  中国光学期刊网论文下载说明


所属栏目 试验研究

基金项目 国家重点基础研究发展规划(973)项目(2014CB046701)

收稿日期 2018/10/15

修改稿日期

网络出版日期

作者单位点击查看


引用该论文: FAN Yi,SU Haozhan,CHEN Kai,ZHANG Lefu,GUO Xianglong. Corrosion Fatigue Crack Growth Behavior of Austenitic Stainless Steels in Seawater Environment[J]. Corrosion & Protection, 2020, 41(7): 67


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】DELAVAR A N,SHAYEGANI M,PASHA A. An investigation of cracking causes in an outlet RTJ flange in ISOMAX unit[J]. Case Studies in Engineering Failure Analysis,2013,1(2):61-66.
 
【2】XIE Y,ZHANG J S. Chloride-induced stress corrosion cracking of used nuclear fuel welded stainless steel canisters:a review[J]. Journal of Nuclear Materials,2015,466:85-93.
 
【3】YONEZAWA T. Nickel alloys:properties and characteristics[M]//Comprehensive Nuclear Materials.[s.n.],Elsevier,2012:233-266.
 
【4】黄毓晖. 304不锈钢氯离子腐蚀的力-化学行为研究[D]. 上海:华东理工大学,2011.
 
【5】刘海定,王东哲,王春光,等. 海水环境中不锈钢腐蚀疲劳裂纹研究进展[J]. 全面腐蚀控制,2017,31(4):60-65.
 
【6】吴恒,王佳,李超,等. 321不锈钢在淡化海水中的耐腐蚀性能[J]. 腐蚀科学与防护技术,2012,24(3):209-212.
 
【7】AL-RUBAIE K S,GODEFROID L B,LOPES J A M. Statistical modeling of fatigue crack growth rate in Inconel alloy 600[J]. International Journal of Fatigue,2007,29(5):931-940.
 
【8】WILLIAMS G V M,KRÄMER S,JUNG C U,et al. Nuclear magnetic resonance study of the electron-doped high-temperature superconducting cuprates[J]. Solid State Nuclear Magnetic Resonance,2004,26(3/4):236-245.
 
【9】PARIS P,ERDOGAN F. A critical analysis of crack propagation laws[J]. Journal of Basic Engineering,1963,85(4):528-533.
 
【10】JANG C,JANG H,HONG J D,et al. Environmental fatigue of metallic materials in nuclear power plants-a review of Korean test programs[J]. Nuclear Engineering and Technology,2013,45(7):929-940.
 
【11】SEIFERT H P,RITTER S,LEBER H J. Corrosion fatigue crack growth behaviour of austenitic stainless steels under light water reactor conditions[J]. Corrosion Science,2012,55:61-75.
 
【12】李强,周昌玉,黄文龙,等. 加载频率变化的腐蚀疲劳裂纹扩展速率数学模型[J]. 南京化工大学学报(自然科学版),2000,22(1):32-36.
 
【13】BACHE M R,EVANS W J. The fatigue crack propagation resistance of Ti-6Al-4V under aqueous saline environments[J]. International Journal of Fatigue,2001,23:319-323.
 
【14】TIEN J K,RICHARDS R J,BUCK O,et al. Model of dislocation sweep-in of hydrogen during fatigue crack growth[J]. Scripta Metallurgica,1975,9(10):1097-1101.
 
【15】BARTER S A,MOLENT L,WANHILL R J H. Typical fatigue-initiating discontinuities in metallic aircraft structures[J]. International Journal of Fatigue,2012,41:11-22.
 
【16】BARSANTI M,BEGHINI M,FRASCONI F,et al. Experimental study of hydrogen embrittlement in Maraging steels[J]. Procedia Structural Integrity,2018,8:501-508.
 
【17】胡建朋,刘智勇,胡山山,等. 304不锈钢在模拟深海和浅海环境中的应力腐蚀行为[J]. 表面技术,2015,44(3):9-14.
 
【18】AHN S,JEONG D,KWON Y,et al. Environmental fatigue crack propagation behavior of β-annealed Ti-6Al-4V alloy in NaCl solution under controlled potentials[J]. International Journal of Fatigue,2018,111:186-195.
 
【19】CHENG A K,CHEN N Z. Corrosion fatigue crack growth modelling for subsea pipeline steels[J]. Ocean Engineering,2017,142:10-19.
 
【20】石凯凯,蔡力勋,包陈. 预测疲劳裂纹扩展的多种理论模型研究[J]. 机械工程学报,2014,50(18):50-58.
 
【21】DOWLING N J E,DURET-THUAL C,AUCLAIR G,et al. Effect of complex inclusions on pit initiation in 18% chromium-8% nickel stainless steel types 303,304,and 321[J]. Corrosion,1995,51(5):343-355.
 
【22】BOX S M,WILSON F G. Effect of carbide morphology and composition on the intergranular corrosion of Ti-stabilized austenitic stainless steels[J]. J Iron Steel Inst,1972,210(9):718-723.
 
【23】何建宏,唐祥云,陈南平. 铁素体-奥氏体双相不锈钢的氢致开裂研究[J]. 金属学报,1989,25(1):37-41.
 
【24】MILELLA P P. Corrosion fatigue[M]//Fatigue and Corrosion in Metals. Milano:Springer Milan,2012:767-806.
 
相关信息
   标题 相关频次
 晶界碳化物和冷变形对600合金应力腐蚀开裂的影响规律
 10
 304L不锈钢在高温高压水中的腐蚀疲劳裂纹扩展行为
 8
 表面粗糙度对800H合金在超临界水环境中腐蚀行为的影响
 8
 反应堆压力容器用508Ⅲ低合金钢在高温高压硼锂水环境中的应力腐蚀开裂行为
 8
 316L奥氏体不锈钢在高温水中的应力腐蚀
 7
 超临界二氧化碳环境中800H合金的均匀腐蚀行为
 6
 核电汽轮机转子腐蚀疲劳裂纹的扩展行为
 5
 直流电压降法应力腐蚀裂纹扩展速率在线测定试验系统
 5
 F690超高强钢的腐蚀疲劳裂纹扩展行为及其有限元模拟
 4
 Zr-2.5Nb压力管材的氧化腐蚀行为影响因素
 4
 Zr-Nb系合金在360 ℃/20 MPa溶氧水中的腐蚀行为
 4
 奥氏体不锈钢AL-6XN在超临界水中的腐蚀
 3
 高温水中溶解氧对不锈钢堆焊层SCC性能的影响
 3
 管线钢腐蚀疲劳裂纹扩展的研究现状
 3
 用直流电压降法研究316LN不锈钢的疲劳裂纹扩展行为
 3
 06Cr17Ni5N奥氏体不锈钢热轧板表面脱皮原因
 2
 0Cr18Ni9钢表面等离子铌合金化层的显微组织和摩擦磨损性能
 2
 18-8奥氏体不锈钢焊接接头晶间腐蚀的评定及控制
 2
 1Cr18Ni9Ti不锈钢脉冲超窄间隙焊接头的组织及耐腐蚀性能
 2
 2A12铝合金不同方法腐蚀疲劳的寿命及断口形貌
 2
 2Cr13钢汽轮机叶片的开裂原因分析
 2
 304L/ER316L奥氏体不锈钢焊接板的点蚀行为
 2
 304L不锈钢疏水管焊接接头的腐蚀疲劳行为
 2
 304L不锈钢在高温NaOH溶液中的应力腐蚀开裂行为
 2
 304奥氏体不锈钢焊缝低温热老化后的显微组织与力学性能
 2
 304奥氏体不锈钢护栏断裂失效分析
 2
 304不锈钢密封垫片开裂原因分析
 2
 30Cr13不锈钢循环水泵轴的失效原因
 2
 310S和AL-6XN不锈钢在熔融MgCl2中的腐蚀行为
 2
 316L不锈钢焊缝的点蚀行为
 2