搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
一种析出强化型Fe-C-Mn-Ni奥氏体合金钢的微观组织和力学性能
          
Microstructure and Mechanical Properties of a Precipitate-HardenedFe-C-Mn-Ni Austenitic Alloy Steel

摘    要
对Fe-C-Mn-Ni-X(X为铬、钒等元素)奥氏体合金钢锻材进行固溶和时效处理,研究了时效温度(650,700,750 ℃)和时效时间(0~25 h)对合金钢显微组织与力学性能的影响。结果表明:固溶态和时效态合金钢显微组织形态相差不大,时效处理后,合金钢中析出大量与奥氏体基体呈共格或半共格位向关系的纳米VC相;固溶态合金钢表现出很强的时效硬化能力,随时效温度升高,硬度达到峰值的时间缩短,峰值硬度降低;时效处理后,合金钢的屈服强度和抗拉强度显著增加,断后伸长率和加工硬化指数则明显下降,拉伸失效模式由韧性断裂转变为韧脆混合断裂;随时效温度升高和时效时间延长,合金钢的强度有所降低,但加工硬化能力增强。
标    签 奥氏体合金钢   固溶处理   时效硬化   析出强化   austenitic alloy steel   solution treatment   age hardening   precipitation hardening  
 
Abstract
Fe-C-Mn-Ni-X (where X stands for Cr, V, etc.) austenitic alloy steel forgings were solid solution and aging treated. The effects of aging temperature (650, 700, 750 ℃) and aging time (0-25 h) on the microstructure and mechanical properties of the alloy steel were studied. The results show that the microstructure of solid solution treated and aging treated steels were similar. After aging treatment, a large amount of nano-VC phases in co-lattice or semi-co-lattice orientation with the austenite matrix were precipitated in the alloy steel. The solid solution treated alloy steel showed a strong age hardening capability, the aging time to reach the peak hardness was shorted with increasing aging temperature, and the peak hardness decreased. After aging treatment, the yield strength and tensile strength of the alloy steel increased significantly, the elongation and work hardening index decreased, and the tensile failure mode changed from ductile fracture to ductile-brittle mixed fracture. With the aging temperature increasing and the aging time extending, the strength of the alloy steel was reduced, but the work hardening ability was enhanced.

中图分类号 TG142.1   DOI 10.11973/jxgccl202008012

 
  中国光学期刊网论文下载说明


所属栏目 材料性能及应用

基金项目

收稿日期 2020/3/6

修改稿日期 2020/6/29

网络出版日期

作者单位点击查看

备注卜林森(1994-),男,江苏淮安人,硕士研究生

引用该论文: BU Linsen,WANG Min,HAO Qingguo,YANG Qi,LI Wei. Microstructure and Mechanical Properties of a Precipitate-HardenedFe-C-Mn-Ni Austenitic Alloy Steel[J]. Materials for mechancial engineering, 2020, 44(8): 57~62
卜林森,王敏,郝庆国,杨旗,李伟. 一种析出强化型Fe-C-Mn-Ni奥氏体合金钢的微观组织和力学性能[J]. 机械工程材料, 2020, 44(8): 57~62


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】ALLAIN S,CHATEAU J P,BOUAZIZ O,et al.Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys[J].Materials Science and Engineering:A, 2004,387/388/389:158-162.
 
【2】KIM H,SUH D W,KIM N J.Fe-Al-Mn-C lightweight structural alloys:A review on the microstructures and mechanical properties[J].Science and Technology of Advanced Materials, 2013,14(1):014205.
 
【3】PARK K T,JIN K G,HAN S H,et al.Stacking fault energy and plastic deformation of fully austenitic high manganese steels:Effect of Al addition[J].Materials Science and Engineering:A, 2010,527(16/17):3651-3661.
 
【4】GALINDO-NAVA E I,RIVERA-DÍAZ-DEL-CASTILLO P E J.Understanding martensite and twin formation in austenitic steels:A model describing TRIP and TWIP effects[J].Acta Materialia, 2017,128:120-134.
 
【5】DE COOMAN B C,KWON O,CHIN K G.State-of-the-knowledge on TWIP steel[J].Materials Science and Technology, 2012,28(5):513-527.
 
【6】张维娜,刘振宇,王国栋.高锰TRIP钢的形变诱导马氏体相变及加工硬化行为[J].金属学报,2010,46(10):1230-1236.
 
【7】丁桦,杨平.高锰TRIP/TWIP钢变形行为的研究进展[J].材料与冶金学报,2010,9(4):265-272.
 
【8】CHEN S P,RANA R,HALDAR A,et al.Current state of Fe-Mn-Al-C low density steels[J].Progress in Materials Science,2017,89:345-391.
 
【9】SEVILLANO G J.An alternative model for the strain hardening of FCC alloys that twin,validated for twinning-induced plasticity steel[J].Scripta Materialia,2009,60(5):336-339.
 
【10】WU Z Q,DING H,AN X H,et al.Influence of Al content on the strain-hardening behavior of aged low density Fe-Mn-Al-C steels with high Al content[J].Materials Science and Engineering:A, 2015,639:187-191.
 
【11】SOLENTHALER C,RAMESH M,UGGOWITZER P J,et al.Precipitation strengthening of Nb-stabilized TP347 austenitic steel by a dispersion of secondary Nb(C,N) formed upon a short-term hardening heat treatment[J].Materials Science and Engineering:A,2015,647:294-302.
 
【12】CHI C Y,YU H Y,DONG J X,et al.The precipitation strengthening behavior of Cu-rich phase in Nb contained advanced Fe-Cr-Ni type austenitic heat resistant steel for USC power plant application[J].Progress in Natural Science:Materials International, 2012,22(3):175-185.
 
【13】SAGARADZE V V,KOSITSYNA I I,MUKHIN M L,et al.High-strength precipitation-hardening austenitic Fe-Mn-V-Mo-C steels with shape memory effect[J].Materials Science and Engineering:A, 2008,481/482:747-751.
 
【14】MOON J,LEE T H,HEO Y U,et al.Precipitation sequence and its effect on age hardening of alumina-forming austenitic stainless steel[J].Materials Science and Engineering:A, 2015,645:72-81.
 
【15】OU P,XING H,SUN J.Precipitation of nanosized MX at coherent Cu-rich phases in Super304H austenitic steel[J].Metallurgical and Materials Transactions A, 2015,46(1):1-5.
 
【16】ZHAO W X,ZHOU D Q,JIANG S H,et al.Ultrahigh stability and strong precipitation strengthening of nanosized NbC in alumina-forming austenitic stainless steels subjecting to long-term high-temperature exposure[J].Materials Science and Engineering:A, 2018,738:295-307.
 
【17】唐仁政,田荣璋.二元合金相图及中间相晶体结构[M].长沙:中南大学出版社,2009.
 
【18】ZHOU Y H,LIU C X,LIU Y C,et al.Coarsening behavior of MX carbonitrides in type 347H heat-resistant austenitic steel during thermal aging[J].International Journal of Minerals,Metallurgy,and Materials, 2016,23(3):283-293.
 
【19】BAI J W,LIU P P,ZHU Y M,et al.Coherent precipitation of copper in Super304H austenite steel[J].Materials Science and Engineering:A,2013,584:57-62.
 
【20】XI T,BABAR SHAHZAD M,XU D K,et al.Copper precipitation behavior and mechanical properties of Cu-bearing 316L austenitic stainless steel:A comprehensive cross-correlation study[J].Materials Science and Engineering:A, 2016,675:243-252.
 
【21】SU J H,DONG Q M,LIU P,et al.Research on aging precipitation in a Cu-Cr-Zr-Mg alloy[J].Materials Science and Engineering:A, 2005,392(1/2):422-426.
 
相关信息
   标题 相关频次
 淬火分配工艺对60Si2Mn弹簧钢显微组织和力学性能的影响
 4
 2 mm厚1000 MPa级双相钢板电阻点焊工艺参数的优化
 2
 AlxFeCoNiCrTi合金的抗氧化性能及其退火态的组织和硬度
 2
 AlFeCoNiCrTiVx系高熵合金的组织结构及电化学性能
 2
 AZ63镁合金的变形处理与电化学性能
 2
 GB/T 228.1-2010中试验速率控制的实践与思考
 2
 GCr15钢超长寿命疲劳破坏的机理
 2
 S460G1钢特厚板在调质过程中的组织演变与强韧化机制
 2
 SUS304不锈钢三通裂纹产生原因分析
 2
 T300碳纤维复合材料损伤声发射信号的有监督模式识别
 2
 T700碳纤维复合材料层合板面内剪切过程的声发射特性
 2
 T700型碳纤维复合材料拉伸损伤的声学评价方法
 2
 TiSiN纳米复合结构涂层的研究进展
 2
 凹模圆角半径对高强钢板热成形破裂行为影响的数值模拟
 2
 爆炸焊接结构钢-不锈钢复合板界面的微观缺陷
 2
 不同裂纹尺寸铝板的电磁声发射特性
 2
 不同温度固溶处理后FeMnSiCrNi形状记忆合金的力学性能和断裂特征
 2
 不同温度固溶后Incoloy825合金的显微组织与性能
 2
 常压立式储罐腐蚀状态检测与评价技术的研究与应用
 2
 超声波对比法测试金属塑性变形前后残余应力的变化
 2
 沉积不连续NiTi形状记忆合金薄膜PZT的阻尼性能
 2
 储罐不均匀沉降底板腐蚀声发射特性模拟试验
 2
 储罐的不均匀沉降应力监测与检测技术
 2
 储罐声发射内置传感器的声源特性
 2
 吹扫捕集-气相色谱-三重四极杆质谱法同时测定水中苯系物和有机含氧汽油添加剂
 2
 纯铁经表面机械研磨处理后微结构参量的表征
 2
 磁巴克豪森噪声技术在应力评估中的研究进展
 2
 电解液pH对钛合金微弧氧化陶瓷膜的影响
 2
 定向钻穿越管道防腐蚀层及阴极保护的评价方法
 2
 发动机气缸盖开裂分析
 2