搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
微合金化热成形钢开发应用进展及展望
          
Progress and Prospect for Development and Application ofMicroalloying Press-Hardening Steel

摘    要
超高强钢是汽车实现轻量化兼顾安全性的关键材料,1.5 GPa及以上高性能热成形钢的开发和应用是关键。近10 a来,微合金化热成形钢及其零件制造技术迅速发展,实现了高弯曲角度、抗氢脆断裂、高韧性、高淬透性等性能目标,进而提高了车辆的被动安全性能及轻量化水平。综述了微合金化热成形钢开发与使用现状,包括1.5~2.0 GPa级铌、钒、铌钒复合、铌钒(钼)复合微合金化热成形钢的开发和应用进展,以及微合金化对纳米级第二相析出和晶粒细化的影响;微合金化热成形钢的抗氢脆性能和机理;微合金化热成形钢的尖角冷弯性能及其对碰撞安全性能的影响;微合金化热成形钢的断裂失效性能。对今后微合金化热成形钢的生产制造与应用前景作出展望。
标    签 热成形   铌微合金化   氢脆   韧性   弯曲角   断裂卡片   hot-stamping   Nb microalloying   hydrogen embrittlement   toughness   bending angle   fracture card  
 
Abstract
Ultra-high strength steels are important materials for the lightweight and safety of motor vehicles. The development and application of 1.5 GPa and above grade high-performance press-hardening steel are the key. In recent 10 a, the manufacturing technology of microalloying press-hardening steels and their parts have developed rapidly, achieving the performance such as high bending angles, hydrogen embrittlement resistance, high toughness and high hardenability; therefore the passive safety performance and lightweight of vehicles are improved. The development and application status of microalloying press-hardening steels are summarized, including the development and application of 1.5-2.0 GPa grade Nb microalloying, V microalloying, Nb-V composite microalloying and Nb-V(Mo) composite microalloying press-hardening steels, and the effects of microalloying on the nanoscale second phase precipitation and grain refinement; the hydrogen embrittlement resistance and its mechanism of microalloying press-hardening steels; the sharp corner cold bending property of microalloying press-hardening steels and its influence on the collision safety performance; the fracture failure performance of microalloying press-hardening steels. The manufacture and application of microalloying press-hardening steels in the future are also prospected.

中图分类号 TG142.1   DOI 10.11973/jxgccl202012001

 
  中国光学期刊网论文下载说明


所属栏目 综述

基金项目

收稿日期 2020/8/18

修改稿日期 2020/11/12

网络出版日期

作者单位点击查看

备注路洪洲(1981-),男,黑龙江大庆人,教授级高级工程师,博士

引用该论文: LU Hongzhou,ZHAO Yan,FENG Yi,MA Mingtu,BIAN Jian,LIU Yonggang,GUO Aimin. Progress and Prospect for Development and Application ofMicroalloying Press-Hardening Steel[J]. Materials for mechancial engineering, 2020, 44(12): 1~10
路洪洲,赵岩,冯毅,马鸣图,边箭,刘永刚,郭爱民. 微合金化热成形钢开发应用进展及展望[J]. 机械工程材料, 2020, 44(12): 1~10


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】马鸣图,王国栋,王登峰.汽车轻量化导论[M].北京:化学工业出版社,2020.
 
【2】世界汽车车身技术及轻量化技术发展跟踪研究[M].北京:北京理工大学出版社,2018.
 
【3】李军,路洪洲,易红亮.乘用车轻量化及微合金化钢板的应用[M].北京:北京理工大学出版社,2015.
 
【4】LU H Z,ZHANG S Q,JIAN B,et al.Solutions for hydrogen-induced delayed fracture in hot stamping[J].Advanced Materials Research, 2014,1063:32-36.
 
【5】晋家春,谷海容,曹煜,等. 热成形钢抗氢脆性能和冷弯性能研究[C]//第十一届中国钢铁年会论文集:S05.金属材料深加工.北京:中国金属学会,2017:67-72.
 
【6】路洪洲,王文军,郭爱民,等.基于汽车安全的热冲压成形技术优化[J].汽车工艺与材料,2013(10):8-13.
 
【7】MA M T,ZHAO Y,LU H Z,et al.The cold bending cracking analysis of hot stamping door bumper[C]//The 2nd International Conference on Advanced High Strength Steel and Press Hardening (ICHSU 2015).Changsha:World Scientific, 2016.
 
【8】马鸣图,路洪洲,孙智富,等.22MnB5钢三种热冲压成形件的冷弯性能[J].机械工程材料,2016,40(7):7-12.
 
【9】路洪洲.热冲压成形技术潜在风险不容忽视[J].金属加工(热加工),2015(15):11-12.
 
【10】谷海容,卢茜倩,刘永刚,等.微合金元素Nb、V对热成形钢组织及氢脆敏感性影响[J].安徽工业大学学报(自然科学版),2018,35(4):295-300.
 
【11】中信微合金化技术中心,中国汽车工程研究院股份有限公司.汽车EVI高强度钢氢致延迟断裂研究进展[M].北京:北京理工大学出版社,2019.
 
【12】周文强,毕玉梅,邢阳,等.高强度钢板WHF1500H热成形微观组织和力学性能研究[J].金属材料与冶金工程,2017,45(增刊1):11-16.
 
【13】易红亮,常智渊,才贺龙,等.热冲压成形钢的强度与塑性及断裂应变[J].金属学报,2020,56(4):429-443.
 
【14】LIN L, LI B S, ZHU G M, et al.Effects of Nb on the microstructure and mechanical properties of 38MnB5 steel[J].International Journal of Minerals Metallurgy and Materials,2018,25(10):1181-1190.
 
【15】LIN L,LI B S,ZHU G M,et al.Effect of niobium precipitation behavior on microstructure and hydrogen induced cracking of press hardening steel 22MnB5[J].Materials Science and Engineering:A,2018,721:38-46.
 
【16】TU J F, YANG K C, CHIANG L J, et al. The effect of niobium and molybdenum co-addition on bending property of hot stamping steels[J]. China Steel Technical Report, 2016(29):1-7.
 
【17】JO M C,YOO J,KIM S,et al.Effects of Nb and Mo alloying on resistance to hydrogen embrittlement in 1.9 GPa-grade hot-stamping steels[J].Materials Science and Engineering:A,2020,789:139656.
 
【18】MURUGESAN D,DHUA S K,KUMAR S,et al.Development of hot stamping grade steel with improved impact toughness by Nb microalloying[J].Materials Today:Proceedings, 2018,5(9):16887-16892.
 
【19】胡宽辉.2000 MPa级高强塑积热成形钢的研究[D].武汉:武汉科技大学,2019.
 
【20】陈菲.含钒1500 MPa热冲压成型钢的组织与性能研究[D].唐山:华北理工大学,2019.
 
【21】闻玉辉,朱国明,郝亮,等.Nb-Ti微合金化热冲压成形用钢的微观组织与力学性能[J].工程科学学报,2017,39(6):859-866.
 
【22】梁江涛.2000 MPa级热成形钢的强韧化机制及应用技术研究[D].北京:北京科技大学,2019.
 
【23】刘安民,冯毅,赵岩,等.铌钒微合金化对22MnB5热成形钢显微组织与性能的影响[J].机械工程材料,2019,43(5):34-37.
 
【24】BIAN J,MOHRBACHER H,LU H Z,et al.Development of press hardening steel with high resistance to hydrogen embrittlement[M]//HSLA Steels 2015, Microalloying 2015& Offshore Engineering Steels 2015. Cham, Switzerland:Springer International Publishing, 2016:571-576.
 
【25】中信微合金化技术中心,中国汽车工程研究院股份有限公司.中国汽车EVI及高强度钢氢致延迟断裂研究[M].北京:北京理工大学出版社,2018.
 
【26】ZHANG S Q,HUANG Y H,SUN B T,et al.Effect of Nb on hydrogen-induced delayed fracture in high strength hot stamping steels[J].Materials Science and Engineering:A, 2015,626:136-143.
 
【27】MOHRBACHER H,SENUMA T.Alloy optimization for reducing delayed fracture sensitivity of 2000 MPa press hardening steel[J].Metals, 2020,10(7):853.
 
【28】杨海根,赵征志,杨源华,等.1800 MPa级冷轧热成形钢的组织与性能[J].材料热处理学报,2017,38(7):120-125.
 
【29】CHANG Z Y, LIU Z Y, LIU H L, et al. Microstructures and mechanical properties of an ultra-fine grained 2 GPa press-hardening steel[C]//6th International Conference on Advanced Steels. Jeju, Korea:Korean Federation of Science & Technology Societies, 2018:93.
 
【30】CHO L,SULISTIYO D H,SEO E J,et al.Hydrogen absorption and embrittlement of ultra-high strength aluminized press hardening steel[J].Materials Science and Engineering:A, 2018,734:416-426.
 
【31】JIAN B,WANG L,MOHRBACHER H,et al.Development of niobium alloyed press hardening steel with improved properties for crash performance[J].Advanced Materials Research, 2014,1063:7-20.
 
【32】LIANG J T,ZHAO Z Z,SUN B H,et al.A novel ultra-strong hot stamping steel treated by quenching and partitioning process[J].Materials Science and Technology, 2018,34(18):2241-2249.
 
【33】BIAN J,LU H Z,WANG W J,et al.Alloying design and process strategy for high performance 1800 MPa press hardening steel[C]//4th International Conference on Advanced High Strength Steel and Press Hardening (ICHSU2018).Hefei:World Scientific, 2019.
 
【34】NAGAO A,DADFARNIA M,SOMERDAY B P,et al.Hydrogen-enhanced-plasticity mediated decohesion for hydrogen-induced intergranular and "quasi-cleavage" fracture of lath martensitic steels[J].Journal of the Mechanics and Physics of Solids, 2018,112:403-430.
 
【35】NAGAO A,SMITH C D,DADFARNIA M,et al.The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel[J].Acta Materialia, 2012,60(13/14):5182-5189.
 
【36】BEACHEM C D.A new model for hydrogen-assisted cracking (hydrogen "embrittlement")[J].Metallurgical and Materials Transactions B, 1972,3(2):441-455.
 
【37】BIRNBAUM H K,SOFRONIS P.Hydrogen-enhanced localized plasticity:A mechanism for hydrogen-related fracture[J].Materials Science and Engineering:A, 1994,176(1/2):191-202.
 
【38】LYNCH S P.Environmentally assisted cracking:Overview of evidence for an adsorption-induced localised-slip process[J].Acta Metallurgica, 1988,36(10):2639-2661.
 
【39】FERREIRA P J,ROBERTSON I M,BIRNBAUM H K.Hydrogen effects on the interaction between dislocations[J].Acta Materialia, 1998,46(5):1749-1757.
 
【40】ROBERTSON I M,SOFRONIS P,NAGAO A,et al.Hydrogen embrittlement understood[J].Metallurgical and Materials Transactions B, 2015,46(3):1085-1103.
 
【41】BHADESHIA H K D H.Prevention of hydrogen embrittlement in steels[J].ISIJ International, 2016,56(1):24-36.
 
【42】BANERJI S K,MCMAHON C J,FENG H C.Intergranular fracture in 4340-type steels:Effects of impurities and hydrogen[J].Metallurgical Transactions A, 1978,9(2):237-247.
 
【43】CRAIG B,KRAUSS G.The structure of tempered martensite and its susceptibility to hydrogen stress cracking[J].Metallurgical Transactions A,1980,11(11):1799-1808.
 
【44】WANG M Q,AKIYAMA E,TSUZAKI K.Effect of hydrogen and stress concentration on the notch tensile strength of AISI 4135 steel[J].Materials Science and Engineering:A,2005,398(1/2):37-46.
 
【45】SHIBATA A,MATSUOKA T,UENO A,et al.Fracture surface topography analysis of the hydrogen-related fracture propagation process in martensitic steel[J].International Journal of Fracture, 2017,205(1):73-82.
 
【46】SHIBATA A,MURATA T,TAKAHASHI H,et al.Characterization of hydrogen-related fracture behavior in as-quenched low-carbon martensitic steel and tempered medium-carbon martensitic steel[J].Metallurgical and Materials Transactions A, 2015,46(12):5685-5696.
 
【47】SHIBATA A,MOMOTANI Y,MURATA T,et al.Microstructural and crystallographic features of hydrogen-related fracture in lath martensitic steels[J].Materials Science and Technology,2017,33(13):1524-1532.
 
【48】OVEJERO-GARCÍA J.Hydrogen microprint technique in the study of hydrogen in steels[J].Journal of Materials Science, 1985,20(7):2623-2629.
 
【49】TAKAI K,SEKI J,HOMMA Y.Observation of trapping sites of hydrogen and deuterium in high-strength steels by using secondary ion mass spectrometry[J].Materials Transactions,JIM, 1995,36(9):1134-1139.
 
【50】MOMOTANI Y,SHIBATA A,TERADA D,et al.Effect of strain rate on hydrogen embrittlement in low-carbon martensitic steel[J].International Journal of Hydrogen Energy, 2017,42(5):3371-3379.
 
【51】WEI F G, TSUZAKI K. Hydrogen trapping character of nano-sized NbC precipitates in tempered martensite[C]//Proceedings of the 2008 International Hydrogen Conference:Effects of Hydrogen on Materials.[S.l.]:ASM International, 2009:456-463.
 
【52】WEI F G,HARA T,TSUZAKI K.Nano-preciptates design with hydrogen trapping character in high strength steel[M]//Advanced Steels. Berlin, Heidelberg:Springer Berlin Heidelberg, 2011:87-92.
 
【53】OHNUMA M,SUZUKI J I,WEI F G,et al.Direct observation of hydrogen trapped by NbC in steel using small-angle neutron scattering[J].Scripta Materialia, 2008,58(2):142-145.
 
【54】LI J,WU J S,WANG Z H,et al.The effect of nanosized NbC precipitates on electrochemical corrosion behavior of high-strength low-alloy steel in 3.5%NaCl solution[J].International Journal of Hydrogen Energy,2017,42(34):22175-22184.
 
【55】CHEN Y S,LU H Z,LIANG J T,et al.Observation of hydrogen trapping at dislocations,grain boundaries,and precipitates[J].Science,2020,367(6474):171-175.
 
【56】GONG P,PALMIERE E J,RAINFORTH W M.Characterisation of strain-induced precipitation behaviour in microalloyed steels during thermomechanical controlled processing[J].Materials Characterization, 2017,124:83-89.
 
【57】马鸣图,蒋松蔚,李光瀛,等.热冲压成形钢的研究进展[J].机械工程材料,2020,44(7):1-7.
 
【58】宋磊峰,包绎舒,冯毅,等.微合金化热成形钢冷弯性能研究[C]//第三届钒钛微合金化高强钢开发应用技术暨第四届钒产业先进技术交流会论文集.攀枝花:攀钢集团研究院有限公司,2017:147-151.
 
【59】马光宗,冯运莉,李建英,等.带状组织对热冲压成形件组织性能的影响[J].汽车工艺与材料,2020(1):61-63.
 
【60】KURZ T, LAROUR P, LACKNER J, et al. Press-hardening of zinc coated steel-characterization of a new material for a new process[C]//IOP Conference Series:Materials Science and Engineering.[S.l.]:IOP Publishing, 2016, 159(1):012025.
 
【61】NAITO J,MURAKAMI T,OTANI S.Correlation between side impact crash behavior of hot-stamping parts and mechanical properties of steel[J]. Kobe Steel Engineering Reports, 2017,66(2):69-75.
 
【62】EL-MAGD E,GESE H,THAM R,et al.Fracture criteria for automobile crashworthiness simulation of wrought aluminium alloy components[J].Materialwissenschaft Und Werkstofftechnik, 2001,32(9):712-724.
 
【63】潘锋.热成形钢板的碰撞失效预测研究[C]//2015第十八届汽车安全技术学术会议论文集.苏州:中国汽车工程学会,2015:168-177.
 
【64】HOOPUTRA H,GESE H,DELL H,et al.A comprehensive failure model for crashworthiness simulation of aluminium extrusions[J].International Journal of Crashworthiness, 2004,9(5):449-464.
 
相关信息
   标题 相关频次
 铌钒微合金化对22MnB5热成形钢显微组织与性能的影响
 8
 热冲压成形钢的研究进展
 8
 22MnB5钢三种热冲压成形件的冷弯性能
 5
 汽车聚丙烯零部件回收及其改性后物料的性能
 4
 汽车用金属材料在高应变速率下响应特性的研究进展
 4
 重型汽车钢板弹簧早期断裂原因
 4
 1018钢螺钉断裂失效分析
 2
 12.9级内六角圆柱螺栓断裂失效分析
 2
 22Cr双相不锈钢锻件韧性下降原因分析
 2
 252 kV GIS机构止动螺栓的断裂失效分析
 2
 30CrMnSiA螺栓失效分析
 2
 30CrMnSiNi2A钢轮轴表面镀硬铬区域开裂的原因及控制措施
 2
 35钢螺钉断裂分析
 2
 40CrNiMoA高强钢氢脆敏感性和氢含量的关系
 2
 40Cr钢紧固螺栓断裂原因分析
 2
 45号钢在硫化氢水溶液中的腐蚀行为
 2
 60Si2MnA钢片弹簧断裂失效分析
 2
 60Si2Mn钢弹簧断裂原因
 2
 65Mn钢弹簧垫圈开裂原因分析
 2
 700L钢制挂车车架大梁开裂原因及改善措施
 2
 DZ55钢级φ102 mm×9.19 mm地质钻杆管体断裂原因分析
 2
 L360M管线钢管水压爆破试验开裂分析
 2
 LNG储罐海水试压过程中9Ni钢的阴极保护电位
 2
 Maraging(C) 350钢扭杆断裂试验
 2
 S355ML+Z35钢板厚度方向性能不合格原因分析
 2
 Super304H钢700 ℃时效后组织和韧性的变化
 2
 SWRCH15A钢螺钉断裂原因分析
 2
 TiAlSiN/TiAlAgN/Ti(Mo)N-MoS2多层涂层的微观结构及摩擦学性能
 2
 TU2铜管泄漏原因分析
 2
 X70钢和X80钢在鹰潭土壤模拟溶液中的氢脆敏感性
 2