搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
电弧增材制造成形规律、组织演变及残余应力的研究现状
          
Research Process of Formation Law, Microstructure Evolution andResidual Stress in Wire and Arc Additive Manufacturing

摘    要
电弧增材制造技术以其在大型构件成形方面的独特优势得到越来越多的关注,成为应用最广泛的金属增材制造技术之一。介绍了电弧增材制造技术的发展史,从“控形控性”的角度出发,分析了工艺参数对沉积层形貌的影响规律,讨论了成形件的显微组织演变机制,介绍了残余应力数值模拟方法及其优缺点,指出计算流体动力学和有限元方法相结合是未来研究趋势之一,总结了控制应力和变形常用的方法以及电弧增材制造面临的问题和挑战。
标    签 电弧增材制造   沉积层形貌   显微组织   残余应力   wire and arc additive manufacturing   morphology of deposition layer   microstructure   residual stress  
 
Abstract
The wire and arc additive manufacturing (WAAM) has gained more and more attention because of its unique advantages in forming large-scale components, and has become one of the most widely used metal additive manufacturing technology. The development history of WAAM is described. The influence of process parameters on the morphology of deposited layer and the evolution mechanism of microstructure is analyzed from the perspective of “shape and property control”. The numerical simulation methods for residual stress and their advantages and disadvantages are discussed, and it is pointed out that the combination of computational fluid dynamics and finite element method is one future research trend. The common methods for controling the residual stress and deformation, as well as the problems and challenges in wire and arc additive manufacturing, are summarized.

中图分类号 TH164   DOI 10.11973/jxgccl202012002

 
  中国光学期刊网论文下载说明


所属栏目 综述

基金项目 国家重点研发计划项目(2017YFB1103200)

收稿日期 2020/7/10

修改稿日期 2020/8/14

网络出版日期

作者单位点击查看

备注耿汝伟(1991-)男,山东济南人,博士研究生

引用该论文: GENG Ruwei,DU Jun,WEI Zhengying. Research Process of Formation Law, Microstructure Evolution andResidual Stress in Wire and Arc Additive Manufacturing[J]. Materials for mechancial engineering, 2020, 44(12): 11~17
耿汝伟,杜军,魏正英. 电弧增材制造成形规律、组织演变及残余应力的研究现状[J]. 机械工程材料, 2020, 44(12): 11~17


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】ZHAN X H,ZHANG D,WEI Y H,et al.Research on the microstructure and properties of laser-MIG hybrid welded joint of Invar alloy[J].Optics & Laser Technology, 2017,97:124-136.
 
【2】LEE S H,KIM E S,PARK J Y,et al.Numerical analysis of thermal deformation and residual stress in automotive muffler by MIG welding[J].Journal of Computational Design and Engineering, 2018,5(4):382-390.
 
【3】CHEN C,WEI X Q,ZHAO Y,et al.Effects of helium gas flow rate on arc shape,molten pool behavior and penetration in aluminum alloy DCEN TIG welding[J].Journal of Materials Processing Technology, 2018,255:696-702.
 
【4】WU C B,KIM J W.Analysis of welding residual stress formation behavior during circumferential TIG welding of a pipe[J].Thin-Walled Structures, 2018,132:421-430.
 
【5】WU B T,PAN Z X,DING D H,et al.A review of the wire arc additive manufacturing of metals:Properties,defects and quality improvement[J].Journal of Manufacturing Processes,2018,35:127-139.
 
【6】WILLIAMS S W,MARTINA F,ADDISON A C,et al.Wire + arc additive manufacturing[J].Materials Science and Technology, 2016,32(7):641-647.
 
【7】HÖNNIGE J R,COLEGROVE P A,GANGULY S,et al.Control of residual stress and distortion in aluminium wire + arc additive manufacture with rolling[J].Additive Manufacturing, 2018,22:775-783.
 
【8】王华明.高性能大型金属构件激光增材制造:若干材料基础问题[J].航空学报,2014,35(10):2690-2698.
 
【9】BAKER R. Method of making decorative articles:US1533300[P]. 1920-11-12.
 
【10】UJⅡE A. Method of and apparatus for constructing substantially circular cross section vessel by welding:US3558846A[P]. 1971-01-26.
 
【11】KASSMAUL K, SCHOCH F W, LUCKNOW H. High quality large components ‘shape welded’ by a SAW process[J]. Weld Journal. 1983, 62(9):17-24.
 
【12】DICKENS P M, PRIDHAM M S, COBB RC, et al. Rapid prototyping using 3-D welding[C]//Proceedings of the 3rd symposium solid freedom fabrication. Austin, Texas:[s.n.], 1992:280-290.
 
【13】RIBEIRO F, NORRISH J. Metal based rapid prototyping for more complex shapes[C]//Biennial international conference on "Computer Technology in Welding". Cambridge:The Welding Institute, 1996.
 
【14】DINOVITZER M,CHEN X H,LALIBERTE J,et al.Effect of wire and arc additive manufacturing (WAAM) process parameters on bead geometry and microstructure[J].Additive Manufacturing, 2019,26:138-146.
 
【15】OU W,MUKHERJEE T,KNAPP G L,et al.Fusion zone geometries,cooling rates and solidification parameters during wire arc additive manufacturing[J].International Journal of Heat and Mass Transfer, 2018,127:1084-1094.
 
【16】DU J,ZHAO G X,WEI Z Y.Effects of welding speed and pulse frequency on surface depression in variable polarity gas tungsten arc welding of aluminum alloy[J].Metals, 2019,9(2):114.
 
【17】KUMAR A,MAJI K.Selection of process parameters for near-net shape deposition in wire arc additive manufacturing by genetic algorithm[J].Journal of Materials Engineering and Performance, 2020,29(5):3334-3352.
 
【18】DING D H,PAN Z X,CUIURI D,et al.Bead modelling and implementation of adaptive MAT path in wire and arc additive manufacturing[J].Robotics and Computer-Integrated Manufacturing, 2016,39:32-42.
 
【19】WU B T,PAN Z X,DING D H,et al.The effects of forced interpass cooling on the material properties of wire arc additively manufactured Ti6Al4V alloy[J].Journal of Materials Processing Technology, 2018,258:97-105.
 
【20】OGINO Y,ASAI S,HIRATA Y.Numerical simulation of WAAM process by a GMAW weld pool model[J].Welding in the World, 2018,62(2):393-401.
 
【21】卢秉恒, 李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化, 2013,42(4):1-4.
 
【22】AYARKWA K F,WILLIAMS S W,DING J.Assessing the effect of TIG alternating current time cycle on aluminium wire + arc additive manufacture[J].Additive Manufacturing, 2017,18:186-193.
 
【23】WANG L,WANG K H.Investigation on microstructural patterns and hot crack in the molten pool via integrated finite-element and phase-field modeling[J].Journal of Manufacturing Processes, 2019,48:191-198.
 
【24】HAN R H,DONG W C,LU S P,et al.Modeling of morphological evolution of columnar dendritic grains in the molten pool of gas tungsten arc welding[J].Computational Materials Science, 2014,95:351-361.
 
【25】FARZADI A,DO-QUANG M,SERAJZADEH S,et al.Phase-field simulation of weld solidification microstructure in an Al-Cu alloy[J].Modelling and Simulation in Materials Science and Engineering, 2008,16(6):065005.
 
【26】HO A,ZHAO H,FELLOWES J W,et al.On the origin of microstructural banding in Ti6Al4V wire-arc based high deposition rate additive manufacturing[J].Acta Materialia,2019,166:306-323.
 
【27】MIAO Q Y,WU D J,CHAI D S,et al.Comparative study of microstructure evaluation and mechanical properties of 4043 aluminum alloy fabricated by wire-based additive manufacturing[J].Materials & Design,2020,186:108205.
 
【28】WANG Y C,SHI J.Influence of laser scan speed on micro-segregation in selective laser melting of an iron-carbon alloy:A multi-scale simulation study[J].Procedia Manufacturing, 2018,26:941-951.
 
【29】LI Y J,YU S F,CHEN Y,et al.Wire and arc additive manufacturing of aluminum alloy lattice structure[J].Journal of Manufacturing Processes, 2020,50:510-519.
 
【30】DING D H,PAN Z X,CUIURI D,et al.A practical path planning methodology for wire and arc additive manufacturing of thin-walled structures[J].Robotics and Computer-Integrated Manufacturing, 2015,34:8-19.
 
【31】FARZADI A,SERAJZADEH S,KOKABI A H.Investigation of weld pool in aluminum alloys:Geometry and solidification microstructure[J].International Journal of Thermal Sciences, 2010,49(5):809-819.
 
【32】RADHAKRISHNAN B,GORTI S B,TURNER J A,et al.Phase field simulations of microstructure evolution in IN718 using a surrogate Ni-Fe-Nb alloy during laser powder bed fusion[J].Metals, 2018,9(1):14.
 
【33】FANG X W,ZHANG L J,LI H,et al.Microstructure evolution and mechanical behavior of 2219 aluminum alloys additively fabricated by the cold metal transfer process[J].Materials, 2018,11(5):812.
 
【34】黄丹, 朱志华, 耿海滨, 等. 5A06铝合金TIG丝材-电弧增材制造工艺[J]. 材料工程, 2017, 45(3):66-72.
 
【35】SAMES W J,LIST F A,PANNALA S,et al.The metallurgy and processing science of metal additive manufacturing[J].International Materials Reviews, 2016,61(5):315-360.
 
【36】MASUBUCHI K. Analysis of welded structures:Residual stresses, distortion, and their consequences[M]. New York:Pergamon Press,1980.
 
【37】LI R,XIONG J,LEI Y Y.Investigation on thermal stress evolution induced by wire and arc additive manufacturing for circular thin-walled parts[J].Journal of Manufacturing Processes, 2019,40:59-67.
 
【38】UEDA Y,MURAKAWA H,MA N.Welding deformation and residual stress prevention[M]. Oxford:Butterworth-Heinemann, 2012.
 
【39】上田幸雄,村川英一,麻宁绪. 焊接变形和残余应力的数值计算方法与程序[M]. 罗宇, 王江超, 译.成都:四川大学出版社, 2008.
 
【40】WANG J C,MA N S,MURAKAWA H.An efficient FE computation for predicting welding induced buckling in production of ship panel structure[J].Marine Structures, 2015,41:20-52.
 
【41】DENG D A.FEM prediction of welding residual stress and distortion in carbon steel considering phase transformation effects[J].Materials & Design, 2009,30(2):359-366.
 
【42】DING J,COLEGROVE P,MEHNEN J,et al.Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts[J].Computational Materials Science, 2011:50(12):3315-3322.
 
【43】MUKHERJEE T,ZHANG W,DEBROY T.An improved prediction of residual stresses and distortion in additive manufacturing[J].Computational Materials Science, 2017,126:360-372.
 
【44】WANG Z Q,DENLINGER E,MICHALERIS P,et al.Residual stress mapping in Inconel 625 fabricated through additive manufacturing:Method for neutron diffraction measurements to validate thermomechanical model predictions[J].Materials & Design, 2017,113:169-177.
 
【45】LI S, REN S D, ZHANG Y B,et al.Numerical investigation of formation mechanism of welding residual stress in P92 steel multi-pass joints[J].Journal of Materials Processing Technology,2017,244:240-252.
 
【46】MURAKAWA H,DENG D,MA N S,et al.Applications of inherent strain and interface element to simulation of welding deformation in thin plate structures[J].Computational Materials Science, 2012,51(1):43-52.
 
【47】倪辰旖, 张长东, 刘婷婷, 等. 基于固有应变法的激光选区熔化成形变形趋势预测[J]. 中国激光, 2018, 45(7):0702004.
 
【48】LIANG R,LUO Y,LI Z G.The effect of humping on residual stress and distortion in high-speed laser welding using coupled CFD-FEM model[J].Optics & Laser Technology, 2018,104:201-205.
 
【49】XIONG J,LEI Y Y,LI R.Finite element analysis and experimental validation of thermal behavior for thin-walled parts in GMAW-based additive manufacturing with various substrate preheating temperatures[J].Applied Thermal Engineering, 2017,126:43-52.
 
【50】杜畅,张津,连勇,等.激光增材制造残余应力研究现状[J].表面技术,2019,48(1):200-207.
 
【51】GAO H,DUTTA R K,HUIZENGA R M,et al.Stress relaxation due to ultrasonic impact treatment on multi-pass welds[J].Science and Technology of Welding and Joining, 2014,19(6):505-513.
 
【52】NING F D,CONG W L.Microstructures and mechanical properties of Fe-Cr stainless steel parts fabricated by ultrasonic vibration-assisted laser engineered net shaping process[J].Materials Letters, 2016,179:61-64.
 
【53】钦兰云,王维,杨光.超声辅助钛合金激光沉积成形试验研究[J].中国激光,2013,40(1):0103001.
 
【54】张安峰,李涤尘,梁少端,等.高性能金属零件激光增材制造技术研究进展[J].航空制造技术,2016,59(22):16-22.
 
【55】WU D J,GUO M H,MA G Y,et al.Dilution characteristics of ultrasonic assisted laser clad yttria-stabilized zirconia coating[J].Materials Letters, 2015,141:207-209.
 
【56】ZHOU J Z,XU J L,HUANG S,et al.Microstructure and mechanical properties of Cr12MoV by ultrasonic vibration-assisted laser surface melting[J].Materials Science and Technology, 2017,33(10):1200-1207.
 
【57】王维,岳耀猛,杨光,等.超声振动对激光熔凝熔池影响研究[J].中国激光,2015,42(11):1103007.
 
【58】MARTINA F,ROY M J,SZOST B A,et al.Residual stress of as-deposited and rolled wire+arc additive manufacturing Ti-6Al-4V components[J].Materials Science and Technology, 2016,32(14):1439-1448.
 
【59】LEUDERS S,THÖNE M,RIEMER A,et al.On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting:Fatigue resistance and crack growth performance[J].International Journal of Fatigue, 2013,48:300-307.
 
相关信息
   标题 相关频次
 超声冲击对厚板异种钢T型焊接接头组织与硬度的影响
 4
 激光冲击强化对LY2铝合金残余应力、显微组织及疲劳性能的影响
 4
 喷丸工艺对1Cr11Ni2W2MoV钢螺母表面性能和显微组织的影响
 4
 显微组织对Ti-15-3合金喷丸处理效果的影响
 4
 氩弧熔覆铁基梯度熔覆层的显微组织与性能
 4
 不同沉积路径冷金属过渡电弧增材制造H13钢成形件的显微组织和硬度
 3
 不同工艺下GH4169镍基高温合金电弧增材制造热力场数值模拟
 3
 残余应力测定的基本知识——第五讲 金属材料与零件的表面完整性与疲劳断裂抗力间的关系
 3
 沉积温度对20CrMnTi渗碳钢表面电弧离子镀CrN涂层微观结构与性能的影响
 3
 电弧增材成型铝合金的组织及力学性能
 3
 堆覆速度对等离子弧双填丝增材制造碳钢堆覆层组织和性能的影响
 3
 钆含量对电弧增材制造成形Mg-Gd合金显微组织和力学性能的影响
 3
 激光能量对激光冲击强化45钢摩擦磨损性能的影响
 3
 喷丸处理对Al18B4O33晶须增强铝基复合材料残余应力和微观结构的影响
 3
 热处理工艺对GCr15钢轴承外环淬火组织和性能的影响
 3
 06Cr19Ni10不锈钢/A283低碳钢扩散焊接接头的显微组织和力学性能
 2
 06Cr20Ni11钢埋弧焊焊缝的显微组织和性能
 2
 1000-3738(2007)02-0009-04
 2
 102钢的显微组织形态与室温力学性能的关系
 2
 10Ni5CrMoV钢MAG焊接接头的显微组织与力学性能
 2
 12Cr13钢预热处理工艺参数优化
 2
 12Cr1MoV钢管在长时服役后组织及拉伸性能的退化
 2
 12Cr1MoV钢过热器爆管的显微组织和力学性能
 2
 13MnNiMoNbR与00Cr19Ni10异种钢焊接接头的组织与性能
 2
 15CrMo钢和12Cr1MoV钢的快速金相制样方法
 2
 16MND5/309L/308L/Z2CND18-12N异种金属焊接件的组织和性能
 2
 16MnD5钢板焊接件热影响区开裂原因分析
 2
 16MnR钢板焊接对接接头残余应力磁记忆检测研究
 2
 16Mn钢链板断裂分析
 2
 16Mn钢弯管的开裂原因
 2