搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
钴掺杂锰氧化物水系锌离子电池正极材料的制备与电化学性能
          
Preparation and Electrochemical Performance of Cobalt-DopedManganese Oxide Aqueous Zinc-ion Battery Cathode Material

摘    要
以硝酸锰和硝酸钴为原料,通过溶剂热反应、水解和煅烧制备了可作为水系锌离子电池正极材料的钴掺杂锰氧化物,研究了钴掺杂锰氧化物的微观结构及电化学性能。结果表明:所制备的钴掺杂锰氧化物h-CoMn3.2Ox具有分级核壳结构,多孔壳表面存在径向尺寸大于100 nm的花瓣状纳米片,壳和纳米片均由平均粒径为5 nm的一次粒子构成,钴掺杂赋予锰氧化物较小的尺寸和精细的结构;h-CoMn3.2Ox具有方锰矿型一氧化锰的晶体结构;与锰氧化物相比,h-CoMn3.2Ox具有较大的比表面积与比容量,并具有良好的循环稳定性;h-CoMn3.2Ox的储能行为归因于H+/Zn2+的连续共嵌入反应。
标    签 锰氧化物   钴掺杂   分级结构   水系锌离子电池   电化学性能   manganese oxide   cobalt-doping   hierarchical structure   aqueous zinc-ion battery   electrochemical performance  
 
Abstract
The cobalt-doped manganese oxide for aqueous zinc-ion battery cathode material was prepared by solvothermal, hydrolyzing and annealing with cobalt nitrate and manganese nitrate as raw materials. The microstructure and electrochemical performance of cobalt-doped manganese oxide was investigated. The results show that the prepared cobalt-doped manganese oxide h-CoMn3.2Ox had a hierarchical yolk-shell structure, and the porous shell surface was decorated with petal-like nanosheets with radial dimension of more than 100 nm. Both of the shell and nanosheets were composed of primary nanoparticles with average size of 5 nm. Cobalt-doping endowed manganese oxides with small size and delicate structure. h-CoMn3.2Ox had the manganosite MnO crystal structure. Compared with monometallic manganese oxide, h-CoMn3.2Ox exhibited relatively large specific surface areas and specific capacities, and had good cyclic stability. The energy-storage behavior of h-CoMn3.2Ox was attributed to sequent co-insertion of H+ and Zn2+.

中图分类号 TM911   DOI 10.11973/jxgccl202101004

 
  中国光学期刊网论文下载说明


所属栏目 试验研究

基金项目 国家自然科学基金资助项目(51772152,21908110);江苏省自然科学基金资助项目(1192261031693);中央高校基本科研专项资金资助项目(30919011110,1191030558)

收稿日期 2020/5/8

修改稿日期 2020/12/16

网络出版日期

作者单位点击查看

备注胡入丹(1992-),女,四川绵阳人,博士研究生

引用该论文: HU Rudan,SUN Jingwen,LIU Yifan,QIAN Xingyue,ZHANG Litong,ZHU Junwu. Preparation and Electrochemical Performance of Cobalt-DopedManganese Oxide Aqueous Zinc-ion Battery Cathode Material[J]. Materials for mechancial engineering, 2021, 45(1): 20~27
胡入丹,孙敬文,刘一凡,钱惺悦,张丽童,朱俊武. 钴掺杂锰氧化物水系锌离子电池正极材料的制备与电化学性能[J]. 机械工程材料, 2021, 45(1): 20~27


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】LIU J,ZHANG J G,YANG Z G,et al.Materials science and materials chemistry for large scale electrochemical energy storage:From transportation to electrical grid[J].Advanced Functional Materials, 2013,23(8):929-946.
 
【2】FULLER T F.Batteries:Bigger and better[J].Nature Energy, 2016,1(2):16003.
 
【3】CHEN L N,AN Q Y,MAI L Q.Recent advances and prospects of cathode materials for rechargeable aqueous zinc-ion batteries[J].Advanced Materials Interfaces, 2019,6(17):1900387.
 
【4】HUANG S,ZHU J C,TIAN J L,et al.Frontispiece:Recent progress in the electrolytes of aqueous zinc-ion batteries[J].Chemistry - A European Journal, 2019,25(64):201986461.
 
【5】LI C G,ZHANG X D,HE W,et al.Cathode materials for rechargeable zinc-ion batteries:From synthesis to mechanism and applications[J].Journal of Power Sources, 2020,449:227596.
 
【6】TANG B Y,SHAN L T,LIANG S Q,et al.Issues and opportunities facing aqueous zinc-ion batteries[J].Energy & Environmental Science, 2019,12(11):3288-3304.
 
【7】LIU W B,HAO J W,XU C J,et al.Investigation of zinc ion storage of transition metal oxides,sulfides,and borides in zinc ion battery systems[J].Chemical Communications, 2017,53(51):6872-6874.
 
【8】KUNDU D P,ADAMS B D,DUFFORT V,et al.A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode[J].Nature Energy, 2016,1(10):16119.
 
【9】YANG Q,MO F N,LIU Z X,et al.Activating C-coordinated iron of iron hexacyanoferrate for Zn hybrid-ion batteries with 10000-cycle lifespan and superior rate capability[J].Advanced Materials, 2019:1901521.
 
【10】SONG M,TAN H,CHAO D L,et al.Recent advances in Zn-ion batteries[J].Advanced Functional Materials, 2018,28(41):1802564.
 
【11】WEI W F,CUI X W,CHEN W X,et al.Manganese oxide-based materials as electrochemical supercapacitor electrodes[J].Chemical Society Reviews, 2011,40(3):1697-1721.
 
【12】WANG J J,WANG J G,LIU H Y,et al.Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries[J].Journal of Materials Chemistry A, 2019,7(22):13727-13735.
 
【13】XU D W,LI B H,WEI C G,et al.Preparation and characterization of MnO2/acid-treated CNT nanocomposites for energy storage with zinc ions[J].Electrochimica Acta, 2014,133:254-261.
 
【14】WU B K,ZHANG G B,YAN M Y,et al.Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery[J].Small, 2018,14(13):1703850.
 
【15】KHAMSANGA S,PORNPRASERTSUK R,YONEZAWA T,et al.δ-MnO2 nanoflower/graphite cathode for rechargeable aqueous zinc ion batteries[J].Scientific Reports, 2019,9:8441.
 
【16】ALFARUQI M H,ISLAM S,MATHEW V,et al.Ambient redox synthesis of vanadium-doped manganese dioxide nanoparticles and their enhanced zinc storage properties[J].Applied Surface Science,2017,404:435-442.
 
【17】GUAN C,LIU X M,REN W N,et al.Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis[J].Advanced Energy Materials, 2017,7(12):1602391.
 
【18】STOŠEVSKI I,BONAKDARPOUR A,CUADRA F,et al.Highly crystalline ramsdellite as a cathode material for near-neutral aqueous MnO2/Zn batteries[J].Chemical Communications, 2019,55(14):2082-2085.
 
【19】XIONG T,YU Z G,WU H J,et al.Defect engineering of oxygen-deficient manganese oxide to achieve high-performing aqueous zinc ion battery[J].Advanced Energy Materials, 2019,9(14):1803815.
 
【20】WULAN SEPTIANI N L,KANETI Y V,FATHONI K B,et al.Self-assembly of nickel phosphate-based nanotubes into two-dimensional crumpled sheet-like architectures for high-performance asymmetric supercapacitors[J].Nano Energy, 2020,67:104270.
 
【21】WANG L,JIAO X Y,LIU P,et al.Self-template synthesis of yolk-shelled NiCo2O4 spheres for enhanced hybrid supercapacitors[J].Applied Surface Science,2018,427:174-181.
 
【22】XIAO J W,YANG S H.Sequential crystallization of sea urchin-like bimetallic (Ni,Co) carbonate hydroxide and its morphology conserved conversion to porous NiCo2O4 spinel for pseudocapacitors[J].RSC Advances, 2011,1(4):588.
 
【23】GAYER K H,GARRETT A B.The solubility of cobalt hydroxide,Co(OH)2,in solutions of hydrochloric acid and sodium hydroxide at 25°[J].Journal of the American Chemical Society, 1950,72(9):3921-3923.
 
【24】SWAIN H A,LEE C,ROZELLE R B.Determination of the solubility of manganese hydroxide and manganese dioxide at 25.deg.by atomic absorption spectrometry[J].Analytical Chemistry, 1975,47(7):1135-1137.
 
【25】DI CASTRO V,POLZONETTI G.XPS study of MnO oxidation[J].Journal of Electron Spectroscopy and Related Phenomena, 1989,48(1):117-123.
 
【26】HASSEL M,FREUND H J.High resolution XPS study of a thin CoO(111) film grown on Co(0001)[J].Surface Science Spectra, 1996,4(3):273-278.
 
【27】TODOROVA S,KOLEV H,HOLGADO J P,et al.Complete n-hexane oxidation over supported Mn-Co catalysts[J].Applied Catalysis B:Environmental,2010,94(1/2):46-54.
 
【28】LI W,WANG G J,CHEN C,et al.Enhanced visible light photocatalytic activity of ZnO nanowires doped with Mn2+ and Co2+ ions[J].Nanomaterials, 2017,7(1):20.
 
【29】LONG J,GU J X,YANG Z H,et al.Highly porous,low band-gap NixMn3-xO4 (0.55≤ x ≤ 1.2) spinel nanoparticles with in situ coated carbon as advanced cathode materials for zinc-ion batteries[J].Journal of Materials Chemistry A, 2019,7(30):17854-17866.
 
【30】ZHU C Y,FANG G Z,ZHOU J,et al.Binder-free stainless steel@Mn3O4 nanoflower composite:A high-activity aqueous zinc-ion battery cathode with high-capacity and long-cycle-life[J].Journal of Materials Chemistry A, 2018,6(20):9677-9683.
 
【31】LU Z X,WANG N N,ZHANG Y H,et al.Pyrite FeS2@C nanorods as smart cathode for sodium ion battery with ultra-long lifespan and notable rate performance from tunable pseudocapacitance[J].Electrochimica Acta, 2018,260:755-761.
 
【32】GE P,ZHANG C Y,HOU H S,et al.Anions induced evolution of Co3X4 (X=O,S,Se) as sodium-ion anodes:The influences of electronic structure,morphology,electrochemical property[J].Nano Energy,2018,48:617-629.
 
【33】SELVAKUMARAN D,PAN A Q,LIANG S Q,et al.A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries[J].Journal of Materials Chemistry A, 2019,7(31):18209-18236.
 
相关信息
   标题 相关频次
 Al-Zn-In-Si牺牲阳极材料的电化学性能
 2
 Mg-Zn-Cu系合金作为镁电池负极材料的性能
 2
 TiNi合金表面钼合金层的物相与性能
 2
 不同功率超声辅助电火花放电制备Cu-Ni合金粉体的微观结构和粒径分布
 2
 超级13Cr油管钢在含Cl-溶液中的腐蚀行为及其表面腐蚀膜的电化学特性
 2
 沉淀法制备Co(OH)2及其电化学性能
 2
 电解液温度对铝阳极合金电化学性能的影响
 2
 动态海水温度对Al-Zn-In-Mg-Ti牺牲阳极性能的影响
 2
 反应堆一回路结构材料与去污液的相容性
 2
 沸石咪唑酯骨架衍生碳基复合材料的结构及其超级电容器的性能
 2
 合金元素Mn对铝合金阳极组织与性能的影响
 2
 核电厂鼓型滤网牺牲阳极溶解不足的原因
 2
 激光选区熔化成形Inconel718合金的显微组织以及电化学和摩擦学性能
 2
 简单包覆改性LiMn2O4正极材料在高温下的电化学性能
 2
 均匀化退火对Mg-6Al-5Pb-0.6Ce镁阳极组织和性能的影响
 2
 锂离子电池负极用一维ZnMn2O4纳米束材料的制备及电化学性能
 2
 某核电厂滤网用铝合金牺牲阳极的失效原因
 2
 纳米MnO2的制备及显微结构和电化学性能
 2
 铜表面聚合物刷的制备及其电化学性能
 2
 微量硅对Al-In-Mg-Sn阳极合金电化学性能的影响
 2
 牺牲阳极截面形状对其服役性能的影响
 2
 锌合金牺牲阳极海水干湿交替条件下的电化学性能研究
 2
 氧化亚锰电极材料的制备及其超电容性能
 2
 元素镓、锡、铋对牺牲阳极电化学性能的影响
 2
 轧制压下量对Fe-8Al合金板材耐蚀性的影响
 2
  朱美芳院士:把碳纤维穿在身上
 1
 5083铝壳艇外加电流阴极保护系统研制
 1
 940不锈钢在含石英砂3.5%氯化钠溶液中的腐蚀磨损
 1
 Al0.3CoCrFeNi纳米晶高熵合金在碱性溶液中的电化学性能
 1
 AlFeCoNiCrTiVx系高熵合金的组织结构及电化学性能
 1