搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
高速漏磁检测方法的发展
          
Development of high-speed magnetic flux leakage testing method

摘    要
漏磁检测法已成功应用于各类铁磁性材料的检测中,但当代生产技术的革新和新应用领域的出现对漏磁检测法的检测速度提出了新的挑战。高速漏磁检测的信号出现畸变,制约着检测速度的进一步提高。对此,众多研究人员对信号畸变的机理进行研究,发现磁化滞后效应是影响高速漏磁检测信号的主要因素。当高速运动的钢管通过磁化线圈时,涡流使得管壁内的磁场无法达到稳定状态,从而影响了漏磁检测信号。在机理探究的基础上,提出了增大磁化线圈长度、采用多级磁化等方法来抑制高速漏磁检测时信号的畸变。动生涡流无损检测法和动生涡流热成像检测法等新电磁检测方法也被提出,并在高速检测时获得了较好的效果。
标    签 高速漏磁检测   磁化滞后   涡流效应   high-speed magnetic flux leakage testing   time-lag in magnetization   eddy current effect  
 
Abstract
Magnetic flux leakage (MFL) testing method has been successfully applied in the inspection of various ferromagnetic materials. However, the development of modern manufacturing technology and new application areas brought new challenges in the testing speed of MFL testing. The distortion of MFL signals in high speed testing limits the testing speed. Therefore, many researchers studied the mechanism of signal distortion and found that the time-lag in magnetization was the main reason to affect the MFL signal. When the steel pipe passing through the magnetizing coil at a high speed, the eddy current will influence the magnetization of pipe wall and further influence the MFL signal. Based on the mechanism study, methods such as increasing coil length and using multi-stage magnetization have been proposed to reduce the distortion of MFL signals at high speed. Velocity induced eddy current testing method and velocity induced eddy current thermography have also been proposed and achieved good results in high speed testing.

中图分类号 TG115.28   DOI 10.11973/wsjc202102012

 
  中国光学期刊网论文下载说明


所属栏目 综述

基金项目 中央高校基本科研业务费资助项目(2020kfyXJJS015);国家重大专项(2018YFB0106000);国家自然科学基金面上项目(51875226)

收稿日期 2020/7/25

修改稿日期

网络出版日期

作者单位点击查看


备注冯搏(1990-),男,讲师,硕士生导师,主要研究方向为电磁无损检测和超声导波检测

引用该论文: FENG Bo,WU Jianbo,QIU Gongzhe,KANG Yihua. Development of high-speed magnetic flux leakage testing method[J]. Nondestructive Testing, 2021, 43(2): 57~63
冯搏,伍剑波,邱公喆,康宜华. 高速漏磁检测方法的发展[J]. 无损检测, 2021, 43(2): 57~63


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】WANG Z D,GU Y,WANG Y S. A review of three magnetic NDT technologies[J]. Journal of Magnetism & Magnetic Materials,2012,324(4):382-388.
 
【2】PANDEY M D. Probabilistic models for condition assessment of oil and gas pipelines[J]. NDT & E International,1998,31(5):349-358.
 
【3】RYU K S,ATHERTON D L,CLAPHAM L. Effect of bulk stress and pit depth on calculated far and near-side magnetic flux leakage pit signals[J]. Insight:Non-destructive Testing and Condition Monitoring,2002,44(5):285-288.
 
【4】HWANG K,MANDATAM S,UDPA S S,et al. Characterization of gas pipeline inspection signals using wavelet basis function neural networks[J]. NDT & E International,2000,33(8):531-545.
 
【5】POHL R,ERHARD A,MONTAG H J. NDT techniques for railroad wheel and gauge corner inspection[J]. NDT & E International,2004,37(2):89-94.
 
【6】CHRISTEN R,BERGAMINI A,MOTAVALLI M. Influence of steel wrapping on magneto-inductive testing of the main cables of suspension bridges[J]. NDT & E International,2009,42(1):22-27.
 
【7】王阳生, 叶兆国,师汉民,等. 钢丝绳在线定量监测系统[J]. 无损检测,1989,11(6):153-156.
 
【8】刘克明, 李劲松,卢文祥,等. 钢丝绳断丝无损探伤原理及探伤系统信号预处理装置的研究[J]. 强度与环境,1988(3):17-22.
 
【9】李劲松, 刘克明,卢文样,等. 钢丝绳断丝探伤传感器的研制[J]. 华中理工大学学报,1988(3):75-80.
 
【10】白坚, 王平,邹朋朋. 基于轨面适应承载机构的钢轨表面缺陷的漏磁检测[J]. 无损检测,2017,39(11):16-19.
 
【11】谢菲, 孙燕华,姜宵园,等. 矿井提升钢丝绳在线漏磁无损检测装置[J]. 无损探伤,2019,43(1):34-36.
 
【12】单阳. 基于隧道磁传感器在电梯钢丝绳检测中的应用研究[D]. 昆明:昆明理工大学,2018.
 
【13】SUN Y H, FENG B,YE Z J,et al. Change trends of magnetic flux leakage with increasing magnetic excitation[J]. Insight:Non-destructive Testing and Condition Monitoring,2015,57(12):1-8.
 
【14】冯搏,康宜华,汤祺,等. 涡流引起的钢棒磁化滞后时间理论计算[J]. 机械工程学报,2015,51(22):135-140.
 
【15】FENG B,KANG Y H,SUN Y H,et al. Magnetization time lag caused by eddy currents and its influence on high-speed MFL testing[J]. Research in Nondestructive Evaluation,2019,30(4):189-204.
 
【16】杨理践,耿浩,高松巍,等.高速漏磁检测饱和场建立过程及影响因素研究[J].仪器仪表学报,2019,40(10):1-9.
 
【17】MANDAYAM S,UDPA L. Invariance transformations for magnetic flux leakage signals[J]. IEEE Transactions on Magnetics,1996,32(3):1577-1580.
 
【18】SHIN Y K. Numerical prediction of operating conditions for magnetic flux leakage inspection of moving steel sheets[J]. IEEE Transactions on Magnetics,1997,33(2):2127-2130.
 
【19】PARK G S,PARK S H. Analysis of the velocity-induced eddy current in MFL type NDT[J]. IEEE Transactions on Magnetics,2004,40(2):663-666.
 
【20】LI Y,TIAN G Y,WARD S. Numerical simulation on magnetic flux leakage evaluation at high speed[J]. NDT&E International,2006,39:367-373.
 
【21】DU Z Y,RUAN J J,PENG Y,et al. 3D FEM simulation of velocity effects on magnetic flux leakage testing signals[J]. IEEE Transactions on Magnetics,2008,44(6):1642-1645.
 
【22】PULLEN A L,CHARLTON P C,PEARSON N R,et al. Practical evaluation of velocity effects on the magnetic flux leakage technique for storage tank inspection[J]. Insight:Non-destructive Testing and Condition Monitoring,2020,62(2):73-80.
 
【23】冯搏. 钢管漏磁检测中的动生涡流影响机理及其应用[D]. 武汉:华中科技大学,2016.
 
【24】杨理践, 耿浩,高松巍.基于多级磁化的高速漏磁检测技术研究[J]. 仪器仪表学报,2018,39(6):148-156.
 
【25】USAREK Z,CHMIELEWSKI M,PIOTROWSKI L. Reduction of the velocity impact on the magnetic flux leakage signal[J]. Journal of Nondestructive Evaluation,2019,38(1):28.
 
【26】FENG B,KANG Y H,SUN Y H. Theoretical analysis and numerical simulation of the feasibility of inspecting nonferromagnetic conductors by an MFL testing apparatus[J]. Research in Nondestructive Evaluation,2016,27(2):100-111.
 
相关信息
   标题 相关频次
 管道动态磁化漏磁内检测信号的影响因素
 4
 表面粗糙度对磁粉检测的影响
 3
 表面粗糙度对裂纹漏磁检测的影响
 3
 表面粗糙度对涡流检测的影响
 3
 磁场运动速度对动生涡流热成像的影响
 2
 大提离漏磁无损检测方法
 2
 高速检测条件下缺陷钢轨涡流效应的仿真
 2
 基于ECPT的拉应力对铁磁材料缺陷量化影响的仿真分析
 2
 基于STM32F4嵌入式的钢丝绳漏磁检测数据采集系统
 2
 基于脉冲漏磁的表面缺陷判别
 2
 基于柔性阵列压电传感的页岩气管道壁厚监测
 2
 基于云平台的管道腐蚀远程在线监测系统
 2
 铝合金薄板不同走向焊缝缺陷的脉冲涡流热成像检测
 2
 脉冲漏磁检测中的涡流效应
 2
 浅薄缺陷的脉冲漏磁信号特征量提取
 2
 凸轮轴的自动化涡流检测方法与系统
 2
 温度变化对干耦合压电腐蚀监测的影响及其补偿方法
 2
 涡流效应对脉冲漏磁检测信号的影响
 2
 一种基于钢管旋转的高速漏磁180检测系统
 2
 油井管漏磁检测的复合磁化器轻量化方法
 2
 在役井口阀门内部阀杆腐蚀的相控阵超声检测
 2
 轴承滚子微细裂纹的漏磁检测
 2
 钻杆连接螺纹磁扰动检测方法与系统
 2
 TMR传感器及其在电磁检测中的应用
 1
 表面粗糙度对电磁超声测厚的影响
 1
 表面粗糙度对压电超声测厚的影响
 1
 不同应力比下沉淀硬化不锈钢的超高周疲劳断裂机制
 1
 超强磁化下漏磁检测的穿透深度
 1
 抽油杆交流漏磁检测方法与装置研究
 1
 磁饱和后的涡流检测信号的非涡流效应
 1