搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
开孔泡沫铜的压-压疲劳行为
          
Compression-Compression Fatigue Behavior of Open-Cell Foam Copper

摘    要
对具有相同孔径的开孔泡沫铜进行单轴准静态压缩和压-压疲劳试验,分析开孔泡沫铜的压缩特性和疲劳行为,并讨论了疲劳失效方式及破坏机理。结果表明:开孔泡沫铜的压缩应力-应变曲线由弹性变形阶段、平台应力阶段、密实阶段3个阶段组成;在压-压疲劳过程中开孔泡沫铜主要经历了疲劳损伤积累区、应变激增区和持续破坏区3个阶段,应力水平越低开孔泡沫铜的寿命越长;在剪切力作用下,开孔泡沫铜中间部位形成一条与水平方向存在一定角度的挤压带,随着累积应变的增加,挤压带中孔洞结构持续破坏而形成一条几乎水平的压溃带;开孔泡沫铜的疲劳失效机理为孔棱表皮脱落、颈缩、断裂以及棱柱结的开裂。
标    签 开孔泡沫铜   压-压疲劳行为   孔棱   棱柱结   open-cell foam copper   compression-compression fatigue behavior   pore edge   pore junction  
 
Abstract
Uniaxial quasi-static compression and compression-compression fatigue tests were performed on open-cell foam copper with the same pore size. The compression characteristics and fatigue behavior of open-cell foam copper were analyzed, and the fatigue failure mode and failure mechanism were discussed. The results show that the compressive stress-strain curve of open-cell foam copper consisted of elastic deformation stage, platform stress stage, and compaction stage. During compression-compression fatigue process, the open-cell foam copper mainly experienced fatigue damage accumulation zone, strain surge zone, and continuous failure zone. The lower the stress level, the longer the life of open-cell foam copper. Under the action of shearing force, the middle part of the open-cell foam copper formed an extruded zone with a certain angle to the horizontal direction. As the accumulated strain increasing, the pore structure in the extruded zone continued to be destroyed and formed an almost horizontal crush zone. The fatigue failure mechanism of open-cell foam copper was the peeling, necking, fracture of pore edges, and cracking of pore junction.

中图分类号 TG115.5   DOI 10.11973/jxgccl202107004

 
  中国光学期刊网论文下载说明


所属栏目 试验研究

基金项目 国家自然科学基金资助项目(51471036);河南省研究生创新科研项目(CX2018B559)

收稿日期 2020/5/25

修改稿日期 2021/3/2

网络出版日期

作者单位点击查看

备注杨洋(1993-),男,河南周口人,硕士研究生

引用该论文: YANG Yang,CHEN Jian,LI Cong,JIANG Xueao. Compression-Compression Fatigue Behavior of Open-Cell Foam Copper[J]. Materials for mechancial engineering, 2021, 45(7): 17~21
杨洋,陈荐,李聪,姜雪傲. 开孔泡沫铜的压-压疲劳行为[J]. 机械工程材料, 2021, 45(7): 17~21


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】XU J L, JI X B, ZHANG W, et al. Pool boiling heat transfer of ultra-light copper foam with open cells[J]. International Journal of Multiphase Flow, 2008, 34(11):1008-1022.
 
【2】MANCIN S, DIANI A, DORETTI L, et al. Liquid and flow boiling heat transfer inside a copper foam[J]. Procedia Materials Science, 2014, 4:365-370.
 
【3】RONG J, ZHANG T, QIU F X, et al. Design and preparation of efficient, stable and superhydrophobic copper foam membrane for selective oil absorption and consecutive oil-water separation[J]. Materials & Design, 2018, 142:83-92.
 
【4】BARIN R, RASHID-NADIMI S, BIRIA D, et al. Direct electrochemical regeneration of 1, 4-NADH at the copper foam and bimetallic copper foam[J]. Electrochimica Acta, 2017, 247:1095-1102.
 
【5】MARTINELLI M, BENTIVOGLIO F, CARON-SOUPART A, et al. Experimental study of a phase change thermal energy storage with copper foam[J]. Applied Thermal Engineering, 2016, 101:247-261.
 
【6】WANG L, QIAN Y T, DU J M, et al. Facile synthesis of cactus-shaped CdS-Cu9S5 heterostructure on copper foam with enhanced photoelectrochemical performance[J]. Applied Surface Science, 2019, 492:849-855.
 
【7】LIU Y X, ZHOU W, LIN Y, et al. Novel copper foam with ordered hole arrays as catalyst support for methanol steam reforming microreactor[J]. Applied Energy, 2019, 246:24-37.
 
【8】FENG H J, CHEN Y, WANG Y H. Multi-scale porous copper foam current collector for high performance lithium ion battery[J]. Procedia Engineering, 2017, 215:136-144.
 
【9】BERNARD S, KRISHNA BALLA V, BOSE S, et al. Compression fatigue behavior of laser processed porous NiTi alloy[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 13:62-68.
 
【10】LI F P, LI J S, HUANG T T, et al. Compression fatigue behavior and failure mechanism of porous titanium for biomedical applications[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65:814-823.
 
【11】GUILLÉN T, OHRNDORF A, TOZZI G, et al. Compressive fatigue behavior of bovine cancellous bone and bone analogous materials under multi-step loading conditions[J]. Advanced Engineering Materials, 2012, 14(5):B199-B207.
 
【12】LI F P, LI J S, KOU H C, et al. Porous Ti6Al4V alloys with enhanced normalized fatigue strength for biomedical applications[J]. Materials Science and Engineering:C, 2016, 60:485-488.
 
【13】ÖZBILEN S, LIEBERT D, BECK T, et al. Fatigue behavior of highly porous titanium produced by powder metallurgy with temporary space holders[J]. Materials Science and Engineering:C, 2016, 60:446-457.
 
【14】BERNARD S, BALLA V K, BOSE S, et al. Rotating bending fatigue response of laser processed porous NiTi alloy[J]. Materials Science and Engineering:C, 2011, 31(4):815-820.
 
【15】PINTO H, ARWADE S R, VEALE P. Response of open cell aluminum foams to fully reversed cyclic loading[J]. Journal of Engineering Mechanics, 2011, 137(12):911-918.
 
【16】ZHOU J, SOBOYEJO W O. Compression-compression fatigue of open cell aluminum foams:Macro-/micro- mechanisms and the effects of heat treatment[J]. Materials Science and Engineering:A, 2004, 369(1/2):23-35.
 
【17】李雄飞. 高容量锂离子电池负极集流体泡沫铜压缩及疲劳行为研究[D].长沙:长沙理工大学,2017. LI X F. Study on the compression and fatigue behaviors of copper foam for anode current collector in high capacity lithium ion[D]. Changsha:Changsha University of Science and Technology, 2017.
 
【18】戴硕威. 锂离子电池负极集流体泡沫铜腐蚀及环境疲劳行为研究[D].长沙:长沙理工大学,2018. DAI S W. Study on the corrosion behaviors and fatigue behaviors in different environment of copper foam for anode current collector in lithium-ion battery[D]. Changsha:Changsha University of Science and Technology, 2018.
 
【19】WANG C Z, GAN X P, TAO J M, et al. Compression and electromagnetic shielding properties of CNTs reinforced copper foams prepared through electrodeposition[J]. Vacuum, 2019, 167:159-162.
 
【20】CASTRO G, NUTT S R, XU W C. Compression and low-velocity impact behavior of aluminum syntactic foam[J]. Materials Science and Engineering:A, 2013, 578:222-229.
 
【21】YANG X D, HU Q, DU J, et al. Compression fatigue properties of open-cell aluminum foams fabricated by space-holder method[J]. International Journal of Fatigue, 2019, 121:272-280.
 
相关信息
   标题 相关频次
 Ti-10V-2Cr-3Al钛合金的高温压缩变形行为及本构关系
 4
 不同工艺高温固溶与时效处理后SP-700钛合金的组织与性能
 4
 304不锈钢表面磁控溅射制备Cr-C涂层的组织与耐高温电化学腐蚀性能
 2
 45钢棒料冲击功偏低的原因分析
 2
 表面处理对Zr-Sn-Nb合金耐磨损和耐腐蚀性能的影响
 2
 超高效液相色谱-串联质谱法测定4种禽畜肉中泰地罗新残留量
 2
 高效液相色谱-串联质谱法测定不同基质调节尿酸类功能性食品中21种急慢性痛风药物的含量
 2
 红景天提取物抗氧化性能分析研究
 2
 基于免疫算法的316L不锈钢高温低周疲劳寿命预测
 2
 激光选区熔化成形铝合金的组织、性能与倾斜面成形质量
 2
 聚酰亚胺树脂/立方氮化硼砂轮的制备及其磨削性能
 2
 颗粒粒径对喷射沉积制备SiC颗粒增强铝硅合金复合材料显微组织及拉伸性能的影响
 2
 量子点增敏碱性鲁米诺-高碘酸钾化学发光法测定五氯酚钠
 2
 燃料电池用316L不锈钢双极板表面磁控溅射铬涂层的耐腐蚀性能
 2
 熔融碳酸盐燃料电池阳极用多孔铜镍铝合金的制备及其压缩性能
 2
 梯度多孔Ti-15Mo合金材料的制备与压缩变形行为
 2
 选区激光熔化成形不同孔隙结构Ti-15Mo多孔合金的压缩特性
 2
 一种苯胺类席夫碱对N80钢在盐酸介质中的缓蚀性能
 2
 316L不锈钢的价电子结构与拉伸性能
 1
 F690海洋工程钢在大气中不同应力条件下的疲劳极限及裂纹扩展行为
 1
 FPSO生产水闪蒸罐A底部出口管线盲封头穿孔原因分析
 1
 IrOx/Ti电极测定低温溶液的pH
 1
 V-4Cr-4Ti合金的时效与冷加工强化
 1
 W4Mo3Cr4V高速钢稀土多元共渗层的性能
 1
 X70管线钢CO2湿气顶部的腐蚀行为
 1
 X射线粉末衍射法测定晶体硅切割砂浆废料中硅的含量
 1
 保温原油储罐外壁腐蚀成因及防腐蚀措施
 1
 不同铬含量耐候钢在高湿热模拟环境中的耐腐蚀性能
 1
 不同焊接热输入下AZ31镁合金TIG焊接接头的显微组织与力学性能
 1
 不同坡口面角度镀锌钢/铝合金激光熔钎焊接头的界面组织和拉伸性能
 1