扫一扫 加微信
首页 > 期刊论文 > 论文摘要
铁质文物腐蚀产物β-FeOOH的产生及危害
          
Formation and Hazards of Corrosion Product β-FeOOH on Iron Cultural Relics

张然  
摘    要
综述了铁质文物腐蚀产物β-FeOOH的晶体结构、在铁质文物腐蚀中的生成过程以及对铁质文物的危害。β-FeOOH晶体具有隧道结构,隧道中通常含有Cl-,晶体表面也吸附Cl-。它是Cl-作用下铁质文物腐蚀的关键产物,通常在铁质文物出土后由FeCl2、Fe2(OH)3Cl等产物氧化水解生成,其生成过程是导致铁质文物迅速损坏的主要原因,生成后又会进一步参与腐蚀过程。其表面吸附的Cl-会直接引发新的腐蚀,而隧道结构中的Cl-则是铁质文物长期保存过程中的隐患。β-FeOOH是一种对铁质文物危害极大的腐蚀产物,在铁质文物保护过程中应对其进行针对性的处理。
标    签 铁质文物   腐蚀产物   腐蚀机理   四方纤铁矿   氯化物   iron cultural relic   corrosion product   corrosion mechanism   akaganeite   chloride  
 
Abstract
The crystal structure of β-FeOOH, one of corrosion products of iron cultural relics, as well as its formation process and hazards to iron cultural relics are introduced. β-FeOOH crystal has a tunnel structure, the tunnel usually contains Cl- ions, and the crystal surface also adsorbs Cl- ions. β-FeOOH is a key corrosion product of iron cultural relics affected by Cl- ions, and commonly is formed through hydrolysis and oxidation of FeCl2 or Fe2(OH)3 Cl after excavation. The formation process of β-FeOOH mainly causes rapid deterioration of iron cultural relics, and it will participate in the further corrosion process after formation. The Cl- ions adsorbed on the surface of crystal will directly induce new corrosion, and the Cl- ions in the tunnel structure are potential risks in long-term preservation of iron cultural relics. β-FeOOH is a harmful corrosion product to iron cultural relics and should be treated in a targeted manner during the conservation of iron cultural relics.

中图分类号 K876.42   DOI 10.11973/fsyfh-202111001

 
  中国光学期刊网论文下载说明


所属栏目 专论

基金项目 国家重点研发计划项目(2020YFC1522100);国家文物局重点科研基地自筹经费科研项目(2020ZCK111)

收稿日期 2019/12/12

修改稿日期

网络出版日期

作者单位点击查看


引用该论文: ZHANG Ran. Formation and Hazards of Corrosion Product β-FeOOH on Iron Cultural Relics[J]. Corrosion & Protection, 2021, 42(11): 1


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】ZUCCHI F, MORIGI G, BERTOLASI V. Beta iron oxide hydroxide formation in localized active corrosion of iron artifacts[C]//BROWN B F, BURNETT H C, CHASE W T, et al. Corrosion and Metal Artifacts-A Dialogue Between Conservators and Archaeologists and Corrosion Scientists. Washington DC, USA:National Bureau of Standards, 1977:103-105.
 
【2】SELWYN L. Overview of archaeological iron:the corrosion problem, key factors affecting treatment, and gaps in current knowledge[C]//ASHTON J, HALLAM D. Metal 04:Proceedings of the International Conference on Metals Conservation. Canberra, Australia:National Museum of Australia, 2004:294-306.
 
【3】JEGDIĆ B, POLIC-RADOVANOVIĆ S, RISTIĆ S, et al. Corrosion processes, nature and composition of corrosion products of iron artefacts of weaponry[J]. Scientific Technical Review, 2011, 61(2):50-56.
 
【4】KNIGHT B. Why do some iron objects break up in store[C]//CLARKE R W, BLACKSHAW S M. Conservation of Iron. Greenwich, London:Trustees of the National Maritime Museum, 1982:50-51.
 
【5】KNIGHT B. A review of the corrosion of iron from terrestrial sites and the problem of post-excavation corrosion[J]. The Conservator, 1990, 14(1):37-43.
 
【6】THICKETT D. Post excavation changes and preventive conservation of archaeological iron[D]. London:University of London, 2012:291-294.
 
【7】TURGOOSE S. The nature of surviving iron objects[C]//CLARKE R W, BLACKSHAW S M. Conservation of Iron. Greenwich, London:Trustees of the National Maritime Museum, 1982:1-7.
 
【8】TURGOOSE S. Structure, composition and deterioration of unearthed iron objects[C]//AOKI S. Current Problems in the Conservation of Metal Antiqutites. Tokyo:Tokyo National Research Institute of Cultural Properties, 1993:35-53.
 
【9】WANG Z S, XU C C, CAO X, et al. The morphology, phase composition and effect of corrosion product on simulated archaeological iron[J]. Chinese Journal of Chemical Engineering, 2007, 15(3):433-438.
 
【10】SELWYN L S, SIROIS P J, ARGYROPOULOS V. The corrosion of excavated archaeological iron with details on weeping and akaganéite[J]. Studies in Conservation, 1999, 44(4):217-232.
 
【11】STÅHL K, NIELSEN K, JIANG J Z, et al. On the akaganéite crystal structure, phase transformations and possible role in post-excavational corrosion of iron artifacts[J]. Corrosion Science, 2003, 45(11):2563-2575.
 
【12】AL-ZAHRANI A A. Chloride ion removal from archaeological iron and β-FeOOH[D]. Cardiff:University of Wales, 1999:14.
 
【13】GONZÁLEZ N, DE VIVIÉS P, DREWS M J, et al. Hunting free and bound chloride in the wrought iron rivets from the American Civil War submarine H. L. Hunley[J]. Journal of the American Institute for Conservation, 2004, 43(2):161-174.
 
【14】REGUER S, DILLMANN P, MIRAMBET F, et al. Investigation of Cl corrosion products of iron archaeological artefacts using micro-focused synchrotron X-ray absorption spectroscopy[J]. Applied Physics A:Materials Science & Processing, 2006, 83(2):189-193.
 
【15】REGUER S, MIRAMBET F, DOORYHEE E, et al. Structural evidence for the desalination of akaganeite in the preservation of iron archaeological objects, using synchrotron X-ray powder diffraction and absorption spectroscopy[J]. Corrosion Science, 2009, 51(12):2795-2802.
 
【16】马清林, 沈大娲, 永昕群. 铁质文物保护技术[M]. 北京:科学出版社, 2011:7-40.
 
【17】成小林, 梅建军, 陈淑英, 等. 不同保存环境下铁质文物中氯含量的分析[J]. 中国历史文物, 2010(5):25-31.
 
【18】成小林, 胥谞, 赵鹏. 山东蓬莱水城出土铁锚病害分析与保护处理[C]//中国文物保护技术协会第八次学术年会论文集.北京:科学出版社, 2014:17-25.
 
【19】刘薇, 张治国, 李秀辉, 等. 海洋出水古代铁器表面凝结物的分析研究[M]//中国文化遗产研究院. 文物科技研究:第七辑.北京:科学出版社, 2010:132-147.
 
【20】包春磊. 华光礁Ⅰ号出水铁器文物的腐蚀与保护措施[J]. 腐蚀与防护, 2012, 33(7):614-617, 625.
 
【21】包春磊, 贾世杰, 符燕, 等. 海南省博物馆馆藏出水古铁炮腐蚀产物分析[J]. 腐蚀与防护, 2014, 35(1):83-86, 90.
 
【22】包春磊, 贾世杰, 李剑, 等. 热带海洋出水铁炮的保护研究[J]. 腐蚀科学与防护技术, 2016, 28(2):189-192.
 
【23】林浩. 宁波象山港古铁锚化学成分及腐蚀机理分析[J]. 东方博物, 2006(3):68-71.
 
【24】王蕙贞, 朱虹, 宋迪生, 等. 秦汉铁器锈蚀机理探讨及保护方法研究[J]. 文物保护与考古科学, 2003, 15(1):7-11.
 
【25】陶宏. 盐业铁质文物锈蚀机理探讨[J]. 盐业史研究, 2000(3):31-37.
 
【26】戎岩. 申明铺遗址出土腐蚀铁器的微观分析[J]. 咸阳师范学院学报, 2012, 27(4):87-90.
 
【27】卢燕玲. 铁仔山古墓群出土铁器腐蚀病害与机理分析[J]. 中国文物科学研究, 2011(3):36-40.
 
【28】张红燕. 济南魏家庄遗址出土铁器腐蚀初步分析研究[M]//王浩天, 梁宏刚. 文物保护修复理论与实践——金石匠学之路.北京:科学出版社, 2014:1-24.
 
【29】王浩天, 张红燕, 梁宏刚, 等. 高度腐蚀矿化出土铁器的保护修复——以济南魏家庄出土铁釜的保护修复为例[J]. 江汉考古, 2017(5):108-116.
 
【30】申桂云. 铁质文物锈蚀机理及广西出土、出水铁质文物保护研究[J]. 辽宁省博物馆馆刊, 2009:508-542.
 
【31】SONG X W, BOIL J F. Variable hydrogen bond strength in akaganéite[J]. The Journal of Physical Chemistry C, 2012, 116(3):2303-2312.
 
【32】BERNAL J D, DASGUPTA D R, MACKAY A L. The oxides and hydroxides of iron and their structural inter-relationships[J]. Clay Minerals, 1959, 4(21):15-30.
 
【33】MACKAY A L. β-ferric oxyhydroxide[J]. Mineralogical Magazine and Journal of the Mineralogical Society, 1960, 32(250):545-557.
 
【34】SZYTUŁA A, BAŁANDA M, DIMITRIJEVIĆ Ž. Neutron diffraction studies of β-FeOOH[J]. Physica Status Solidi (a), 1970, 3(4):1033-1037.
 
【35】POST J E, BUCHWALD V F. Crystal structure refinement of akaganéite[J]. American Mineralogist, 1991, 76(1/2):272-277.
 
【36】CHAMBAERE D G, DE GRAVE E. A study of the non-stoichiometrical halogen and water content of β-FeOOH[J]. Physica Status Solidi (a), 1984, 83(1):93-102.
 
【37】ELLIS J, GIOVANOLI R, STUMM W. Anion exchange properties of β-FeOOH[J]. Chimia, 1976, 30(3):194-197.
 
【38】CHILDS C W, GOODMAN B A, PATERSON E, et al. The nature of iron in akaganéite (β-FeOOH)[J]. Australian Journal of Chemistry, 1980, 33(1):15-26.
 
【39】BLAND P A, KELLEY S P, BERRY F J, et al. Artificial weathering of the ordinary chondrite Allegan:implications for the presence of Cl- as a structural component in akaganeite[J]. American Mineralogist, 1997, 82(11/12):1187-1197.
 
【40】PATERSON R, RAHMAN H. The ion exchange properties of crystalline inorganic oxide-hydroxides:Part I.βFeOOH:a variable capacity anion exchanger[J]. Journal of Colloid and Interface Science, 1983, 94(1):60-69.
 
【41】CAI J, LIU J, GAO Z, et al.Synthesis and anion exchange of tunnel structure akaganeite[J]. Chemistry of Materials, 2001, 13(12):4595-4602.
 
【42】CORNELL R M, SCHWERTMANN U. The Iron Oxides-Structure, Properties, Reactions, Occurences and Uses[M]. 2nd ed. Weinheim:WILEY-VCH Verlag GmbH & Co. KGaA, 2003:104.
 
【43】THICKETT D, ODLYHA M. The formation and transformation of akaganeite[C]//HYSLOP E, GONZALEZ V, TROALEN L, et al. Metal 2013:Interim Meeting of the ICOM-CC Metal Working Group, Conference Proceedings. Edinburgh, Scotland:Historic Scotland, International Council of Museums, 2013:107-113.
 
【44】GALLAGHER K J, PHILLIPS D N. Hydrogen exchange studies and proton transfer in β iron(III) oxyhydroxide[J]. Chimia, 1969, 23(12):465-470.
 
【45】GILBERG M R, SEELEY N J. The identity of compounds containing chloride ions in marine iron corrosion products:a critical review[J]. Studies in Conservation, 1981, 26(2):50-56.
 
【46】TURGOOSE S. Post-excavation changes in iron antiquities[J]. Studies in Conservation, 1982, 27(3):97-101.
 
【47】KIYAMA M, TAKADA T. Iron compounds formed by the aerial oxidation of ferrous salt solutions[J]. Bulletin of the Chemical Society of Japan, 1972, 45(6):1923-1924.
 
【48】RÉMAZEILLES C, REFAIT P. On the formation of β-FeOOH (akaganéite) in chloride-containing environments[J]. Corrosion Science, 2007, 49(2):844-857.
 
【49】WANG Q Y. Effects of relative humidity on the corrosion of iron:an experimental view[J]. The British Museum Technical Research Bulletin, 2007, 1:65-73.
 
【50】WATKINSON D, LEWIS M. SS Great Britain iron hull:modelling corrosion to define storage relative humidity[C]//ASHTON J, HALLAM D. Metal 04:Proceedings of the International Conference on Metals Conservation. Canberra, Australia:National Museum of Australia, 2004:88-102.
 
【51】WATKINSON D, LEWIS M T. Desiccated storage of chloride-contaminated archaeological iron objects[J]. Studies in Conservation, 2005, 50(4):241-252.
 
【52】LEWIS M R T. The influence of atmospheric moisture on the corrosion of chloride-contaminated wrought iron[D]. Cardiff:Cardiff University, 2009:196-206.
 
【53】THICKETT D. Analysis of iron corrosion products with Fourier transform infra-red and Raman spectroscopies[C]//PICOLLO M. Proceedings of the Sixth Infrared and Raman Users Group Conference (IRUG6). Italy:Instituto di Fisica Applicata "Nello Carrara" IFAC-CNR, 2004:86-93.
 
【54】RIMMER M B. Investigating the treatment of chloride-infested archaeological iron objects[D]. Cardiff:Cardiff University, 2010:39-40.
 
相关信息
   标题 相关频次
 铁质文物腐蚀产物β-FeOOH中Cl的脱出和物相转化
 8
 3A12、5052、6063铝合金在沿海大气环境中的腐蚀行为
 4
 长庆油田含硫化氢区块中J55钢套管的腐蚀机理
 4
 超临界CO2输送环境中O2、SO2和NO2杂质对X52钢腐蚀行为的影响
 4
 大牛地气田某输气管道内腐蚀的原因
 4
 馆藏脆弱铁质文物展柜相对湿度被动控制的定量研究
 4
 核电厂水池覆面用不锈钢结构件在含SO2-4及Cl-硼酸溶液中的腐蚀行为
 4
 平面接触型Cu/Al设备线夹的腐蚀
 4
 “华光礁Ⅰ号”沉船出水铜钱的腐蚀情况
 2
 1.4301不锈钢管线的腐蚀及修复
 2
 304、316不锈钢和Inconel 617镍基合金在硝酸熔盐中的腐蚀行为
 2
 316NG不锈钢在高纯水环境中的腐蚀行为
 2
 3A21铝合金在乙二醇水溶液中的腐蚀行为
 2
 AgO/PS微胶囊改性环氧基涂层对被微生物污染航油的抗菌性
 2
 CO2/H2S分压比对BG90SS材质腐蚀行为的影响
 2
 CO2驱采出井井下附件材料的腐蚀评价与优选
 2
 EH36级平台钢耐海洋大气腐蚀性能
 2
 H2S分压对SM 80SS套管钢在CO2/H2S共存环境中高温高压腐蚀行为的影响
 2
 L320原油输送管道静置段的腐蚀机理
 2
 P110钢和TP110SS钢在含不同饱和气体NaCl溶液中的腐蚀行为
 2
 Q235钢在油田污水处理系统中的垢下腐蚀行为
 2
 RTM成型技术在码头钢筋混凝土结构修复中的应用
 2
 SRB对油气管道腐蚀影响的研究进展
 2
 SS411NS型杀菌剂对Q235钢在循环冷却水中腐蚀行为的影响
 2
 WCp/2024Al基复合材料的腐蚀机理
 2
 X100管线钢在库尔勒土壤模拟溶液中的腐蚀行为
 2
 X52钢在模拟高酸性气田环境中的腐蚀行为
 2
 X65钢在CO2饱和油田水中的电化学行为和腐蚀机理
 2
 X80钢的CO2腐蚀电化学行为与机理研究
 2
 X80管线钢在库尔勒土壤模拟溶液中的腐蚀行为
 2