扫一扫 加微信
首页 > 期刊论文 > 论文摘要
高应变速率轧制AZ31镁合金的组织及微裂纹演变
          
Microstructure and Microcrack Evolution of AZ31 Magnesium AlloyDuring High Strain-rate Rolling

摘    要
对铸态AZ31镁合金进行预热温度为300~450℃、轧辊线速度为828 mm·s-1、单道次压下量为10%~80%的高应变速率(3.6~10.4 s-1)轧制,研究轧制过程中镁合金的显微组织及微裂纹演变机制。结果表明:孪生是变形初期主要的变形机制,孪晶的数量在变形初期迅速增加;随着压下量的增加,镁合金发生再结晶,孪晶数量增长趋势变缓;随着预热温度的升高,镁合金组织中的孪晶密度整体呈下降趋势;镁合金的再结晶方式以孪生诱导再结晶和晶界弓出再结晶为主,孪生、再结晶和微裂纹存在竞争关系;细晶区的裂纹由孔洞形成、长大和合并引起;孪生会诱发微裂纹,同时大量孪晶的产生又有利于抑制裂纹的扩展。
标    签 AZ31镁合金   高应变速率轧制   微裂纹   孪生   再结晶   AZ31 magnesium alloy   high strain-rate rolling   microcrack   twinning   recrystallization  
 
Abstract
The as-cast AZ31 magnesium alloy was high strain-rate (3.6-10.4 s-1) rolled at preheating temperatures of 300-450℃ and rolling linear speed of 828 mm s-1 with single pass reductions of 10%-80%, and the microstructure and mechanism of microcrack evolution were investigated. The results show that twinning was the main deformation mechanism at early deformation stage, and the twin number sharply increased; with increasing rolling reduction, recrystallization occurred and the increase of twin number was gradually stable. Twin density in magnesium alloy microstructure decreased with increasing preheating temperature. Twinning induced recystallization and bulging recrystallization were the main recrystallization of magnesium alloy. The competition among twinning, recrystallization and microcrack existed. In fine grain area, the formation of crack was attributing to the initiation, growth and coalescence of holes. Twinning induced microcracks, while the formation of many twins could inhibit the crack propagation.

中图分类号 TG339   DOI 10.11973/jxgccl202111004

 
  中国光学期刊网论文下载说明


所属栏目 试验研究

基金项目 国家自然科学基金资助项目(52071139,52075159);国家金属材料近净成形工程技术研究中心开放基金项目(2020013);湖南省自然科学基金资助项目(2020JJ5198);江西省教育厅科学技术研究项目(GJJ203001,GJJ191277)

收稿日期 2021/4/6

修改稿日期 2021/9/14

网络出版日期

作者单位点击查看

备注肖罡(1983-),男,江西九江人,教授,博士

引用该论文: XIAO Gang,WAN Quanhui,ZHU Biwu,LIU Xiao,LIU Xiaohong. Microstructure and Microcrack Evolution of AZ31 Magnesium AlloyDuring High Strain-rate Rolling[J]. Materials for mechancial engineering, 2021, 45(11): 18~23
肖罡,万泉慧,朱必武,刘筱,刘晓红. 高应变速率轧制AZ31镁合金的组织及微裂纹演变[J]. 机械工程材料, 2021, 45(11): 18~23


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】GUO P C, LI L X, LIU X, et al. Compressive deformation behavior and microstructure evolution of AM80 magnesium alloy under quasi-static and dynamic loading[J]. International Journal of Impact Engineering, 2017, 109:112-120.
 
【2】CHEN Y, GUO Y B, GUPTA M, et al. A study of the dynamic compressive response of AZ31/Al2O3 nanocomposites and the influence of nanoparticles[J]. International Journal of Impact Engineering, 2016, 89:114-123.
 
【3】LU M, HUANG S Q, LUO S L, et al. Effect of pre-solution treatment on deformation behavior of AZ80-Ag magnesium alloy[J]. Journal of Materials Research and Technology, 2020, 9(5):10807-10818.
 
【4】AYER Ö.Effect of die parameters on the grain size, mechanical properties and fracture mechanism of extruded AZ31 magnesium alloys[J]. Materials Science and Engineering:A, 2020, 793:139887.
 
【5】张丁非, 戴庆伟, 胡耀波, 等.镁合金板材轧制成型的研究进展[J]. 材料工程, 2009, 37(10):85-90. ZHANG D F, DAI Q W, HU Y B, et al. Progress in the research on rolling formation of magnesium alloy sheet[J]. Journal of Materials Engineering, 2009, 37(10):85-90.
 
【6】HAMADA G, SAKAI T, UTSUNOMIYA H.Effect of rolling speed on deformability and microstructure in rolling of AZ31B magnesium alloy[J]. Advanced Materials Research, 2010, 89/90/91:227-231.
 
【7】SAKAI T, WATANABE Y, UTSUNOMIYA H.Microstructure and texture of AZ80 magnesium alloy sheet rolled by high speed warm rolling[J]. Materials Science Forum, 2009, 618/619:483-486.
 
【8】SU J, SANJARI M, KABIR A S H, et al. Characteristics of magnesium AZ31 alloys subjected to high speed rolling[J]. Materials Science and Engineering:A, 2015, 636:582-592.
 
【9】郑翊, 严红革, 陈吉华, 等.高应变速率轧制ZK60板材的超塑性行为[J]. 中国有色金属学报, 2014, 24(4):839-847. ZHENG Y, YAN H G, CHEN J H, et al. Superplasticity behavior of ZK60 alloy sheet prepared by high strain rate rolling process[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(4):839-847.
 
【10】朱素琴.中高应变速率轧制制备超细晶镁合金板材原理探索及相关基础研究[D].长沙:湖南大学, 2012. ZHU S Q.An exploratory study on the principle of the fabrication of ultrafine grained magnesium sheets using medium-high strain rate rolling technique and the related fundamental research[D].Changsha:Hunan University, 2012.
 
【11】LIU X, WANG Y Y, ZHU B W, et al. Effect of microstructures and textures on the anisotropy of mechanical properties of AZ31 magnesium alloy sheets subjected to high strain rate rolling[J]. Materials Research Express, 2019, 6(10):106591.
 
【12】ZHU S Q, YAN H G, CHEN J H, et al. Feasibility of high strain-rate rolling of a magnesium alloy across a wide temperature range[J]. Scripta Materialia, 2012, 67(4):404-407.
 
【13】YAN H G, ZHOU X P, GAO X P, et al. Development of the fine-grained Mg-0.6Zr sheets with enhanced damping capacity by high strain rate rolling[J]. Materials Characterization, 2021, 172:110826.
 
【14】刘筱, 杨辉, 朱必武, 等.高速冲击载荷下预变形AZ31镁合金的流变行为及本构模型[J]. 中国有色金属学报, 2021, 31(3):659-668. LIU X, YANG H, ZHU B W, et al. Flow behavior and constitutive model for pre-deformed AZ31 magnesium alloy under high-speed impact loading[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(3):659-668.
 
【15】刘龙飞, 姜炳春, 赵俊, 等.冲击载荷下AZ31镁合金的变形行为和组织演变[J]. 机械工程材料, 2015, 39(1):24-28. LIU L F, JIANG B C, ZHAO J, et al. Deformation behavior and microstructure evolution of AZ31 magnesium alloy at impact load[J]. Materials for Mechanical Engineering, 2015, 39(1):24-28.
 
【16】LIU X, ZHU B W, XIE C, et al. Twinning, dynamic recrystallization, and crack in AZ31 magnesium alloy during high strain rate plane strain compression across a wide temperature[J]. Materials Science and Engineering:A, 2018, 733:98-107.
 
【17】董勇, 董明, 汪哲能, 等.初始晶粒尺寸对大应变轧制AZ31镁合金板材显微组织和力学性能的影响[J]. 机械工程材料, 2014, 38(7):33-37. DONG Y, DONG M, WANG Z N, et al. Effect of initial grain sizes on microstructure and mechanical properties of AZ31 magnesium alloy sheets fabricated by large strain rolling[J]. Materials for Mechanical Engineering, 2014, 38(7):33-37.
 
【18】卢立伟, 赵俊, 刘龙飞, 等.温度和加载方向对挤压态AZ31镁合金动态压缩行为及显微组织的影响[J]. 机械工程材料, 2014, 38(11):35-39. LU L W, ZHAO J, LIU L F, et al. Effects of temperature and loading direction on dynamic compression behavior and microstructure of extruded AZ31 magnesium alloy[J]. Materials for Mechanical Engineering, 2014, 38(11):35-39.
 
相关信息
   标题 相关频次
 Al-Mg-Si-Cu合金双道次热变形流变软化行为
 4
 室温压缩AZ31镁合金的再结晶动力学
 4
 温度和加载方向对挤压态AZ31镁合金动态压缩行为及显微组织的影响
 4
 12Cr9NiAlMo模具钢的选区激光熔化成形工艺优化及热处理后的组织和性能
 2
 30MnSi预应力混凝土用钢棒延迟断裂原因
 2
 40Cr钢油缸断裂原因
 2
 45钢模托开裂分析
 2
 A6061铝合金脉冲MIG焊T型接头应力场有限元模拟
 2
 Al-1.8Cu-0.4Mg-0.4Mn合金冷轧织构的演变
 2
 Al-4B中间合金对AZ31镁合金晶粒尺寸和力学性能的影响
 2
 AZ31镁合金表面Al-Ti-TiB2激光熔覆层的组织和性能
 2
 AZ31镁合金的热变形行为及加工图
 2
 AZ31镁合金挤压板材的力学性能和耐腐蚀性能
 2
 AZ31镁合金手机外壳冲压模具的设计与成形工艺
 2
 AZ31镁合金在Al(NO3)3溶液中的电化学行为和放电性能
 2
 AZ31镁合金在热压缩过程中的变形行为
 2
 CO2气体保护焊的焊缝形貌建模及虚拟化仿真系统开发
 2
 H13热作模具钢退火后探伤不合格原因分析
 2
 S20A钢弹壳断裂失效分析
 2
 X12CrMoWVNbN10-1-1钢中δ铁素体的消除
 2
 奥氏体不锈钢焊缝组织等轴晶化处理方法的研究
 2
 爆炸焊接结构钢-不锈钢复合板界面的微观缺陷
 2
 变形参数对AZ31B镁合金薄板再结晶组织的影响
 2
 变形条件对AZ31镁合金塑性的影响
 2
 不同电流下AZ31镁合金交流钨极氩弧焊焊接接头的显微组织与力学性能
 2
 不同焊接热输入下AZ31镁合金TIG焊接接头的显微组织与力学性能
 2
 不同条件热处理后Ti-15-3钛合金的再结晶织构
 2
 不同退火不同轧制工艺铝阳极的组织和性能
 2
 不同温度下Mg-11Y-5Gd-2Zn-0.5Zr镁合金的拉压不对称性
 2
 常化退火处理对无取向硅钢组织和织构的影响
 2